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Abstract—The least squares based cost functions are sensitive
to outliers in the measured data. The presence of outliers is con-
sidered as impulsive noise. In practical scenarios, the co channel
interference, saturation effects, non linearity of the measuring
instruments, atmospheric conditions and malfunction of sensors
will result in outliers or impulsive noise. The robust function
obtained by considering the error as the linear combination of
sign preserving basis functions is found to be robust against
outliers in the desired data. In many practical applications, the
parameter to be estimated can be sparse in nature, i.e. only a few
elements are large values and the rest are insignificantly small. In
such sparse systems, if the prior information about the sparsity
is known, then the known information can be incorporated in
the cost function as a regularization function. A robust sparse
diffusion algorithm is proposed in this work, which is robust
against outliers in the desired data and performs better than the
existing algorithms in sparsity underlying systems. Simulations
performed for different cases of outliers conditions and sparsity
conditions validate that the proposed method outperforms the
state of the art methods.
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I. INTRODUCTION

Wireless sensor networks have wide range of applications
ranging from precision agriculture to cognitive radio[1], [2].
Centralized processing involves a fusion center, which pro-
cesses all the data received from the network and broadcasts
back the final estimate. This fusion center based learning
results in huge communication burden if the sensors are
remotely placed and which in turn results in more power
requirements. Distributed signal processing overcomes all
these problems, by enabling each sensor with processing
capabilities. Each sensor in a distributed network will sense
the noisy measurements from a geographic area of interest,
processes them and share their estimates and data with their
neighborhood nodes. In distributed estimation, there are three
major strategies namely incremental [3], diffusion [4] and
consensus [2]. The incremental strategy requires a Hamiltonian
path for communication between the nodes, which is a NP hard
problem. Moreover incremental strategy will fail if there are
any link failures. Diffusion strategy outperforms the consensus
strategy [5], [2]. Diffusion strategy[6] finds applications in
many areas including bacteria foraging[7] ,fish schooling[8],
bird flight formulations[9], cognitive radio[10]. Most of the

techniques utilizes l2 or l1 norm based cost function for
optimization. The noise present in the estimation process is
assumed to be Gaussian in nature. But in practical scenarios,
the noise will be heavy tailed unlike Gaussian due to saturation
effects, non linearities, link failures, atmospheric conditions
etc. In such scenarios, the noise cannot has to be treated as
impulsive noise or outliers. The performance of the algorithms
based on least squares cost function will degrade since it is
sensitive to outliers. Robust cost functions have been proposed
in the literature to handle perturbations in the desired data.
In such robust cost functions[11], [12], the error is replace
by a score function generated using the error such that it
suppresses outliers. The order statistics based methods use
mean, median and similar properties of the data for adaptation
during the time iterations. In [13], the error is considered as
linear combination of sign preserving basis functions, which
resulted in a Robust diffusion algorithm. In many practical
applications, the parameter of interest can be sparse i.e. only
a few elements are large values and the rest are insignificantly
small [14], [15], [16]. In such sparse systems, if the prior
information about the sparsity is known, then the known
information can be incorporated in the cost function as a
regularization function. In [14], a sparse based cost function is
proposed, where the regularization function utilizes the prior
sparse information. Since it is based on least squares criteria,
the performance will degrade in presence of outliers.
A novel algorithm is proposed in this work, which incorporates
the time varying non linear error and regularization function
exploiting sparsity in its cost function. This diffusion based
distributed estimation algorithms is robust against outliers in
desired data and performs well if the parameter to be estimated
is sparse.

II. PROBLEM FORMULATION

Consider a wireless sensor network having N = 20 nodes
fully connected as shown in Fig. 1. Each node will sense its
noisy data xk,i, yk,i,which are related as

yk,i = xTk,iw
0 + vk,i, (1)

where w0 is the parameter to be estimated and vk,i is the noise
at kth node in ith iteration. Each and every node in the network
will have access to its neighbor nodes, hence they will share
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the information throughout the network. The objective of this
work is to estimate the parameter of interest w by utilizing all
the information collected across the network in a distributed
and iterative manner. This can be defined as the cost function
as below

J (w) = arg min
w

∥∥y (i)−XT (i)w
∥∥
∗, (2)

where ‖‖∗ represents norm and y,X define the desired and
input data obtained from all the nodes in the network up to
ith time. Thus, the (2) is not distributed in nature. To obtain
distributed processing the cost function in (2) is redefined as
sum of N local cost functions as given below

J (w) = arg min
w

N∑
k=1

∥∥yk (i)−XT
k (i)w

∥∥
∗ , (3)

where yk (n) ,Xk (n) are the desired and input data obtained
at kth node up to ith time. Now, the objective of this work is
to optimize (3).

III. PROPOSED METHOD

The cost function in usually l2 or l1 norm of the error as in
[2], [4]. But these algorithms are not robust against outliers. If
there are outlier in the desired data, then their performance will
degrade. Motivated from [14] [13], the robust cost function
exploiting sparsity is defined as below:

J (w) = arg min
w

N∑
k=1

β
(
yk (i)− xTk (i)w

)
+ ζf (w) , (4)

where β () is a maximum likelihood function defined as in [17]
and ζ is a regularization constant. The regularization function
f (w) should be convex and two different regularization func-
tions are considered in this work motivated from [14],[17].
The steepest decent solution of the proposed method is given
as

wk,i = wk,i−1 − µ∇wk,i−1
(J (wk,i−1)) , (5)

where µ is the step size. From [17][13], the (4) is redefined
for adapt and the combine diffusion strategy as below

ψk,i = wk,i−1 + µ
∑
p∈Nk

cp,kx
T
k,ihk,i (ek (i))

−ζ∂wk,i
(f (wk,i))

wk,i =
∑
p∈Nk

ap,kψp,i

(6)

where hk,i (e (i)) is defined as linear combination of B sign
preserving basis functions as given below

hk,i (ek (i)) = αTk,iφk,i, (7)

where αk represents the coefficient vector corresponding to
Bk basis functions vector φk defined as below

αk,i
∆
= [αk,i (1) , αk,i (2) , ..., αk,i (B)]

T

φk,i
∆
= [ψk,1 (ek (i)) , ψk,2 (ek (i)) , ..., ψk,B (ek (i))]

T
(8)

From [17], the basis functions that are able to suppress the
impulse samples are given as below

ψk,1 (x) = x,
ψk,b (x) = tanh ((b− 1)x) , b = 2, 3, .., B.

(9)

A. Zero-Attracting Robust Sparse Diffusion (ZA RSD)

The new cost function obtained by incorporating l1 regular-
ization function is defined as below

J (w) = arg min
w

N∑
k=1

β
(
yk (i)− xTk (i)w

)
+ ‖w‖1 (10)

The steepest decent solution is given as

ψk,i = wk,i−1 + µk
∑
p∈Nk

cp,kx
T
k,ihk,i (ek (i))

−ζzasign (wk,i−1)
wk,i =

∑
p∈Nk

ap,kψp,i

(11)

The regularization term uniformly shrinks all elements of the
vector w, hence it is referred as zero attracting (ZA) algorithm.

Algorithm 1 : Robust Sparse Diffusion

Initialization: wk,−1 = 0L×1,B = 2, ε = 10−6,ϑ = 0.9,Π ∆
=

I − 11T

B .For each time i ≥ 0,
Incremental Step(repeat):

for k=1:N

• Calculate the error ek (i) = yk (i)− xTk,iw
• Calculate the error non linearity using below equations:

– ψk,b (i) = ψk,b (ek (i)) , b = 1, 2, ..., B
– φk,i = col {ψk,1 (i) , ..., ψk,B (i)}
– Rφk,i

= ϑRφk,i−1
+ (1− ϑ)φk,iφ

T
k,i

– ψ′k,b (i) = ψ′b (e (i)) , b = 1, 2, ..., B
– φk,i

′ = col
{
φk,1

′ (i) , ....,φk,B
′ (i)
}

– φ̃k,i
′

= ϑφ̃
′
k,i−1 + (1− ϑ) φ̃

′
k,i−1

– θk,i = 2Π
(
Rφk,i

αk,i − φ̃k,i
′)

– τk (i) = ϑτk (i− 1) + (1− ϑ)
‖xk,i‖2
M

–
^

λk (i) = sigmoid
[(
αTk,i−1φ̃k,i

′)
τk (i)

]
– λk (i) =

^

λk (i)
min{αk,i−1(b),1≤b≤B}

‖αk,i‖∞+ε

– αk,i = αk,i−1 − λk (i)θk,i

• Update the non linear error vector as hk (i) = αTk,iφk,i
• Weight update for ZA RS-LMS:

ψk,i = wk,i−1 + µ
∑
p∈Nk

cp,kx
T
k,ihk,i (ek (i))

−ζzasign (wk,i−1)

• Weight update for RZA RS-LMS:

ψk,i = wk,i−1 + µ
∑
p∈Nk

cp,kx
T
k,ihk,i (ek (i))

−ζrzadiag
{

1
ε+|w1| ,

1
ε+|w2| , .,

1
ε+|wM |

}
sign(wk,i−1)

end
Diffusion step(repeat):

wk,i =
∑
p∈Nk

ap,kψp,i
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Fig. 1: 20 nodes network
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Fig. 2: Outlier percentages in the desired data at each node in
the network

B. Reweighted Zero-Attracting Robust Sparse LMS (RZA
RSD)

The best measure of sparsity is the l0 norm. Hence, in-
corporating the surrogate approximation of l0 norm as the
regularization parameter, the cost function is defined as below

J (w) = arg min
w

N∑
k=1

β
(
yk (i)− xTk (i)w

)
+ζrza

M∑
l=1

|wl|
ε+|wl|

(12)

The steepest decent solution results in the reweighted zero
attracting (RZA) algorithm defined as below

ψk,i = wk,i−1 + µ
∑
p∈Nk

cp,kx
T
k,ihk,i (ek (i))

−ζrzadiag
{

1
ε+|w1| ,

1
ε+|w2| , .....,

1
ε+|wM |

}
sign(wk,i−1)

wk,i =
∑
p∈Nk

ap,kψp,i

(13)
where ε is a very small number (ε = 0.1 in this work) and
M is the length of the parameter vector w. The ZA and RZA
robust sparse diffusion algorithms are depicted in Algorithm
1.
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Fig. 3: MSD for 10% outliers in the desired data with k = 50
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Fig. 4: MSD for 30% outliers in the desired data with k = 50

IV. SIMULATION RESULTS AND DISCUSSION

The proposed algorithms are validated for different cases of
outliers distribution and sparsity ratios. A 20 nodes network
depicted in Fig. 1. is considered for all simulation based
experiments in this work. The input generated is Gaussian
with 0.1 variance and zero mean. The parameter of interest or
the parameter to be estimated w is considered to be of size
M = 50. The desired data is generated using the relation in
(1). The noise present in the desired data is a combination of
Gaussian and impulsive noise or outliers and it is generated
using ε− contamination model, whose probability density
function is given as

fν = (1− ε) N
(
0, σ̄2

ν

)
+ εN

(
0, kσ̄2

ν

)
, (14)

where ε is the contamination ratio. If 10% outliers are present,
then ε = 0.1. σ̄2

ε is the variance and k >> 1 is the
scale. The system will revert back to Gaussian noise case
if ε = 0. The outliers percentage is considered as 10% and
30% for low and high contamination scenarios in the network.
The corresponding mean square deviation (MSD) figures are
depicted in Fig. 3 and Fig. 4 for 10% and 30% outliers
respectively. For the first 2000 iterations , the vector w0 is
assumed to have only one non zero element such that the
sparsity ratio is 1/50. For the next 2000 iterations, 25 elements
are considered to have non zero elements and the rest to
be zeros such that the sparsity ratio is 25/50. For the last
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Fig. 5: MSD for different outliers percentages in the desired
data with k = 50

2000 iteration, all the elements are considered as non zeros
resulting in non sparse system. The regularization constants
are empirically chosen as ζZA = 0.001, ζRZA = 0.00025 for
both the cases. The step size is considered as µ = 0.08 for all
the nodes in the network. All the simulation results depicted
are obtained by averaging over 100 random independent
experiments. The proposed algorithm is compared with sparse
diffusion LMS (SD) proposed in [15] in Fig. 5 for different
percentages of outliers across the network as shown in Fig.
2. The proposed algorithm outperforms the SD, ZA SD, RZA
SD[15] algorithms from the literature. When the sparsity ratio
is 1/50, the ZA RSD and RZA RSD perform better than
RSD[13]. If the sparsity ratio is 25/50 then the performance
of ZA RSD degrades compared to the other two counterparts.
If the system is made completely non sparse, the RSD and
RZA RSD will have similar performance. Hence the proposed
algorithms will perform better in presence of sparsity and will
perform as good as the unregularized algorithm if the system
is non sparse.

V. CONCLUSION

A new algorithm has been proposed which improves the
performance of Robust diffusion by exploiting sparsity thereby
introducing a sparsity based regularization term in the cost
function. The algorithm is validated for distributed estimation
problem for different percentages of outliers in the desired data
and for different sparsity ratio scenarios. Simulation results
show that the proposed algorithms ZA RSD and RZA RSD
outperforms the RSD, SD, ZA SD, RZA SD in presence of
sparsity in the parameter of interest. The RZA RSD algorithm
will perform equivalent to RSD if the system is completely
non-sparse.
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