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Abstract—One of the assuring technologies today is Fog
computing, focus on the extensive use of the computational
and storage capacities of the end devices in a network. In
present day there due to the enormous amount of data from
the number of IoT devices, a centralized cloud system is quite
inadequate. This challenge can be addressed by deploying Fog
devices neighbouring to these IoT devices so as to provide with
real-time response. Thus for the creation of a smart city we
advance towards an architecture in which the cloud data centre
at the top followed by SDN controllers, fog controllers, fog devices
and smart sensors. We propose an integer programming model
in our problem formulation of deploying the fog nodes, fog
controllers, SDN controllers which results in minimization of
latency, traffic and cost with constraints such as device capacity,
offloading workload, range etc. Further on, our work solve this
NP-hard problem by weighted sum method and the two meta-
heuristic algorithms Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) compared to Randomized Algorithm. Thus
a network planner with a cost efficient fog network in mind can
relate to the simulations illustrated in the paper for their existing
computational and storage configuration. We verify our proposed
model and algorithms through simulation which help to design
efficient fog network.

Index Terms—Fog Computing, IoT services, Smart city, Meta-
heuristic algorithm, Fog Network Design

I. INTRODUCTION

With the massive growing urban population, problems such
as traffic, pollution, health issues, congestion, low quality of
general services has shown a rapid growth. To tackle these
problems smart city is a solution is being propounded by
everyone. Smart city is an formidable vision as to resolve
the above urbanization problems by the efficient use of the
city infrastructure thus improving the life sustenance of its
citizens. With the latest advances in the technologies such
as Internet of Things (IoT), fast communication and efficient
networking, computing and big data analytics the dream of
smart city can be achieved. Problems related to the areas
such as health-care, traffic, water, energy, waste management
can be solved. IoT supplies a robust instrument to sense and
control the physical city surroundings [1]–[3]. Data analytics
of the information generated by these IoT devices is a key
in attaining and redeeming the city smartness. Clouds being
a virtually unlimited source of storage and computational
resource, are thought to be a environment for the big data
analytics[4] [5] and can easily manage the IoT devices. The
amount of IoT devices in our surrounding is around 7 billion,

and expected to reach a cosmic count of 10 billion by 2020.
We can imagine the amount of data that these devices would
be generating so as to bottleneck the capacity of the cloud
centres working around them. Thus applications which require
fast real-time response for the safety and emergency issues are
not addressed in an optimal way. Problem arises especially
with the wireless network, as they have low bandwidth and
high functional costs. Although many edge device computing
model exists such as Cloudlet, mobile edge computing and
fog computing are proposed to address this issue on a large
[3], [6]–[9]. The essence of these technologies is that of
bringing the computing and the caching properties, resources
and analytical power nearer to the places where this data is
being generated. Some of these technologies such as cloudlet;
mobile edge computing and fog radio access networks which
are provided by third parties are at fixed locations-based
solution, which are quite powerful yet not adaptable enough
for on demand deployment when there is a requirement. Even
the bottleneck problems of the wireless network due to huge
data generation by the IoT devices are quite prevalent. Due to
these reasons only fog computing has opened for research and
development, still being at very early stage. WiFi access points
and smartphones computational capabilities [3], [8] can be
utilized for the analytical purposes when they are available and
required. Processing on these computing devices is suitable
only for time-sensitive data. Big data analytics and large time
consuming computation happens on the centralized cloud only.
The primitive fog computing model did not resolved large
scale data analytics challenges faced by IoT applications.
Due to the technological advancement in the last few years
has given a boom in the smart devices such as (e.g. smart
phones and tablets).With an increased computational power,
communication and storage capabilities of these devices, small
ad-hoc fogs can be formulated. Even small base stations and
WiFi based hotspots are also gaining popularity. These small
base stations can contain dedicated computing resource to
form a macro-level base station to design fog network.

With the varying requirement of the smart cities, leads
to multi-tier fog infrastructure so that the QoS management
of these multi-layered fogs can correlate each other with
a remote cloud in delivering a productive and immediate
response. In the current paper we propose a mutli-level fog
computing based, broad scale data analytics utility service for



Fig. 1: Hierarchical Architecture of Fog System Model

the smart cities. Basically there are three main contributions:
A framework of multi-tier fog computing is proposed, which
is composed of both ad-hoc and dedicated fogs with unique
deployable resources. Massive initial infrastructure of fog can
be neglected by utilizing the opportunistic and radially avail-
able computing resources. The distributed computing engines
abet in large scale data analytics services over the proposed
multi-tier fog computing system. Smart city that has multiple
applications which utilizes admission control, offloading, QoS
and resource allocation with an aim of providing real-time data
analytics which in turn enhances the utility of fog computing.
The QoS constraints of real-time jobs and improving the com-
puting utility is achieved by acknowledging the bandwidth,
latency, cost and computation of the Network. To the best of
our knowledge, QoS issues for fog computing has rarely been
touched in the literature.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig 1 depicts the hierarchy and the connection architecture
of the fog nodes with the above fog controller and SDN
controller with a crucial aim of reducing distribution cost with
constraints of high demand capacity, coverage and volume of
the devices. Table 1 describe the notations used in the problem
model.

Objective:- The model is relevant according to the IP model:
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subject to (9)-(33)
Constraints required in building the network for the whole

architecture in a bottom-up fashion are here by illustrated.
Constraint (9) enforces that for each coordinating device k,
only one link xtk between fog node t and co-ordinating device
k is connected.∑

t∈ΦF

xtk = 1, ∀k ∈ ΦC (9)

Constraints (10) and (11) consider the binary decision
variable ft of whether to deploy a fog device t is determined
by the links with co-ordinating devices.

ft ≤
∑

k∈ΦC

xtk, ∀t ∈ ΦF (10)

xtk ≤ ft, ∀t ∈ ΦF , ∀k ∈ ΦC (11)

Constraints (12) imposes that specifically one fog controller
n coupled with fog node t.∑

n∈ΦFC

xnt = ft, ∀t ∈ ΦF (12)

Similarly, constraints (13)-(15) determine binary decision
variable fcn of whether to place a fog controller n.

fcn ≤
∑

t∈ΦF

xnt, ∀n ∈ ΦFC (13)

xnt ≤ fcn, ∀n ∈ ΦFC , ∀t ∈ ΦF (14)

∑
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xmn = fcn, ∀n ∈ ΦFC (15)



TABLE I: Definitions of Notations

Parameter Definition Parameter Definition

I Cloud data center Index ΦSC set of possible locations of SDN controllers.

ΦFC set of possible locations of fog controllers. ΦF set of possible locations of fog nodes.

ΦC set of co-ordinating node. Cf The cost of unit length of fiber.

CSC set up cost of a SDN controller. CFC set up cost of a fog controller.

CF set up cost of a fog node. α method that measure transmission delay.

β method that measure propagation delay. δ method that measure processing delay.

DSC
m The maximum capacity that SDN controller m can meet. DFC

n The maximum capacity that fog controller n can meet.

DF
t The maximum capacity that fog node t can meet. NSC The upper limit of the number of fog controllers regulated by a SDN controller.

NFC The upper limit of the number of fog devices regulated by a fog controller. NF The upper limit of the number of coordinating devices which are covered by a fog device.

dij Distance between node i and node j. LC The length of data to be transferred from a coordinating device to a fog device.

LF The length of data to be transferred from a fog device to a fog controller. LFC The length of data to be transferred from a fog controller to a SDN controller.

ΨC The data rate from a co-ordinating device to a fog device. ΨF The data rate from a fog device to a fog controller.

ΨFC The data rate from a fog controller to a SDN controller. RF Diameter of the coverage range of a fog device.

RFC Diameter of the coverage range of a fog controller. RSC Diameter of the coverage range of a SDN controller.

θC Demand of a co-ordinating device. φFtk Maximum time is taken to establish the link between fog device t and coordinating device k.

φFC
nt Maximum time is taken to establish the link between fog controller n and fog device t. φSC

mn Maximum time is taken to establish the link between SDN controller m and fog controller n.

$(Pi) Demand of possible location Pi.

xij A binary decision variable deciding if a link between nodes i and j exists. scm
A binary decision variable deciding if the possible location for SDN controller
m is selected to place a SDN controller.

fcn
A binary decision variable deciding if the possible location for fog controller
n is selected to place a fog controller. ft

A binary decision variable deciding if the potential site for fog device
t is selected to place a fog device.

Constraints (16)-(18) define binary decision variable scm of
whether to deploy a SDN controller m.

scm ≤
∑

n∈ΦFC

xmn, ∀m ∈ ΦSC (16)

xmn ≤ scm, ∀m ∈ ΦSC , ∀n ∈ ΦFC (17)

xIm = scm, ∀m ∈ ΦSC (18)

Constraints towards the needed capacity of every device
are described as listed below. Constraint (19) enforce the
needed amount $(ft) provided by fog device t to be all
requirement of all coordinating devices resolutions with all the
connections between fog node t and each coordinating node
k; and constraints (20) imposes that the maximum capacity
DF

t for a fog device t.∑
k∈ΦC

θC . xtk = $(ft), ∀t ∈ ΦF (19)

$(ft) ≤ ft. DF
t , ∀t ∈ ΦF (20)

Constraints (21)-(22) consider the maximal demand DFC
n

for a fog controller n, and Constraints (23)-(24) take into
account the limit of DSC

m for a SDN controller m.

∑
t∈ΦF

$(scm). xnt = $(fcn), ∀n ∈ ΦFC (21)

$(fcn) ≤ fcn. DFC
n , ∀n ∈ ΦFC (22)

∑
n∈ΦFC

$(fcn). xmn = $(scm), ∀m ∈ ΦSC (23)

$(scm) ≤ scm. DSC
m , ∀m ∈ ΦSC (24)

Constraints (25)-(27) does the estimation of the latency
times between fog device t and coordinating device k ,
between fog controller n and fog device t, and between SDN
controller m and fog controller n, and enforce them not to
be exceed the maximal latency times φFtk, φFC

nt , and φSC
mn

respectively.

LC/(
∑

k∈ΦC

xtk.ΨC).ft ≤ φFtk, ∀t ∈ ΦF (25)

LF /(
∑

t∈ΦF

xnt.ΨF ).fcn ≤ φFC
nt , ∀n ∈ ΦFC (26)

LFC/(
∑

n∈ΦFC

xmn.ΨFC).scm ≤ φSC
mn, ∀m ∈ ΦSC

(27)
Number of links for each fog device, fog controller, and

SDN controller has a limit in constraints (28)-(30), respec-
tively. ∑

k∈ΦC

xtk ≤ NF , ∀t ∈ ΦF (28)

∑
t∈ΦF

xnt ≤ NFC , ∀n ∈ ΦFC (29)

∑
n∈ΦFC

xmn ≤ NSC , ∀m ∈ ΦSC (30)

For wireless links between fog devices and coordinating
devices, fog controllers and fog devices, SDN controllers
and fog controllers ,constraints (31)-(33) considers that the
distance between fog devices and coordinating devices, fog
controllers and fog devices, and SDN controllers and fog
controllers must not be exceed the coverage range RF , RFC ,
and RSC , respectively.

xtk.dtk ≤ RF /2, ∀t ∈ ΦF , ∀k ∈ ΦC (31)



xnt.dnt ≤ RFC/2, ∀t ∈ ΦF , ∀n ∈ ΦFC (32)

xmn.dmn ≤ RSC/2, ∀n ∈ ΦFC , ∀m ∈ ΦSC (33)

III. PROPOSED ALGORITHM

There are possible numbers of approaches for the solution
of a multiple objective problem, and the most evident solution
is to solve it is by converting it to single one. It is carried out
by weighted sum technique.

A. Weighted Sum Method

The weighted sum approach combines multi-objective func-
tions into a scalar main objective function. In this combination,
different objectives are given weight values between 0 and 1.
The proposed objective function can be rewritten using the
following equations:

Minimize

(
w1. Delay

norm
Fog Netw + w2. T raffic

norm
Fog Netw

+w3. Cost
norm
Fog Netw

)
(34)

where w1, w2, and w3 are weighted coefficients and
DelaynormFog Netw, TrafficnormFog Netw, CostnormFog Netw are the
normalized objective functions as they have different scales.
Equations (34)-(36) are used to normalize the objective func-
tion. An additional constraint (37) is added which states that
the sum of the weighted coefficients should be 1.

DelaynormFog Netw =
Delaymax

Fog Netw −DelayFog Netw

Delaymax
Fog Netw −Delaymin

Fog Netw

(35)

TrafficnormFog Netw =
Trafficmax

Fog Netw − TrafficFog Netw

Trafficmax
Fog Netw − Trafficmin

Fog Netw
(36)

CostnormFog Netw =
Costmax

Fog Netw − CostFog Netw

Costmax
Fog Netw − Costmin

Fog Netw

(37)

w1 + w2 + w3 = 1 (38)

The main aim of our aforementioned work is to considered
matrices must be optimized as to place the FNs, FCs, and
SDN-Cs (k, t,m respectively) nodes in the network. We have
used fitness function and objective function interchangeably.
The euclidean distance is used as a distance matrix for the
algorithms which is calculated by the latitudes and longitudes
of nodes.
The FND Random algorithm selects randomly k FNs from
the total n possible locations, t FCs from k possible locations
and m SDN-C from t possible locations. Finally, the Algo-
rithm 1 produces the fitness function and the final positions
of the FNs, FCs and SDN-Cs. A sub-optimal solution of the
objective function is obtained by the FNs’, FCs’ and SDN-Cs’
position vector in the proposed FND PSO algorithm. We

assume d dimensional vectors of the n particles each being
a potential solution. The proposed algorithm finds the best
solution from a population called swarm. Upon the use of
the two types of learning that is cognitive and social learning
our algorithm find the best solution amongst the many. The
position of the FNs is represented by each of the dimension,
where a given number FNs k, each particle Pi is described
as a k − dimensional vector. Permutation of a particle is
described as Pi = {Pi1, Pi2, ......., Pik} and Pik ∈ [1, n],
when n is the number of nodes in the network. Similarly,
we can find out FCs’ position and SDN-Cs’ position. In our
algorithm a network represented by G where the weight of an
edge represents the distance between two nodes. The algorithm
with a random permutation of FNs initializes each particle’s
position vector among the total number of the nodes. Similarly
happens for FCs and SDN-Cs. Each particle’s velocity in x
a,d y components are initialized to zero and even the particle’s
global velocity too. Updating the fitness of the particle in each
iterations. If newly obtained fitness value is better than the
previous fitness value of the particle, then its fitness value is
updated.
The Algorithm 3 operates on the fitness population of chromo-
somes and each chromosome is a collection of FNs positions.
The best possible FNs, FCs, and SDN-Cs location using GA
can be obtained by setting various generic operators such
as crossover, mutation, stopping criteria, etc. The algorithm
simulates on the basis of ”survival of the fittest” type scenario,
where each generation of the algorithm attempts to improve
upon previous generation.

Algorithm 1: FND Random

Input: coordinates nodes(x, y), No FN , No FC,
No SDN C

Output: cost, position
1 for i = 1 to No FN do
2 RFNposition

←
Random (coordinates nodes (x, y) , No FN)

3 KMeans Clustering
(
coordinates nodes (x, y), RFNposition

)
4 FNPosition ← Centroid of each cluster

5 for i = 1 to No FC do
6 RFCposition

←
Random (coordinates FNs (x, y) , No FC)

7 FCposition ← RFCposition

8 for i = 1 to No SDNC do
9 RSDN Cposition ←

Random (coordinates FCs (x, y) , No SDNC)
10 SDN Cposition ← RSDN Cposition

11 Calculate FCS Network
12 return FCS Network, positions

IV. IMPLEMENTATION AND SIMULATION RESULTS

In this paper, we define the group of IoT devices cluster
which has a unique IP address. Each cluster has its own



Algorithm 2: FND PSO

Input: co ordinates nodes(x, y), No FN , No FC,
No SDN C

Output: cost, position
1 A population of nodes vector which are randomly

generated, local velocity vector (Lv) and global
velocity vector (GV ), and velocity vector (V ) for
each particle in a population.

2 Convert all continues vector to discrete vector
including the nodes selection vector.

3 Calculate the fitness value for each particle.
4 Update the particle’s best position (Pbest) for all

particles.
5 The global best position (Gbest) is the minimum

fitness value.
6 for each particle update the particle’s velocity and

position
7 Vi = Vi + Lv × Rnd (0, 1) × (Pbest −Xi) + Gv ×

Rnd(0, 1) × (Gbest −Xi)
8 Xi = Xi + Vi
9 end for

10 it = it+ 1
11 until it > MAX ITERATIONS
12 Calculate FCS Network
13 return FCS Network, positions

number of IoT devices, and for each device, the demand
will be generated based on vCPU, memory, and bandwidth
requirements. Each IoT device cluster has a coordinate (x, y)
which is randomly generated in the area 100× 100 km2. The
euclidean distance between the cluster and the FN, FN and
FC, FC and SDN-C is used to calculate the transmission delay.
The simulation has been carried out in iFogSim simulator in
Intel(R) Core (TM) i3-5005U CPU @ 2.oo GHz (4CPUs)
and 4GB RAM . The process has bee tested over multiple
simulations and the average value has been shown as results.
For the two evolutionary algorithms, we need a population
size of 100 and the number of iterations was set to 1000.
Figure 2 exhibits the effect of number of FNs on the objective
function. Figure 2(a) , 2(b) shows the latency Vs the number
of homogeneous and heterogeneous FNs and on varying FNs
to observe the variations in the latency. The optimal number
of FNs are 17 ≈ 19. From the previous simulations it has
observed that, 17 number of FNs are sufficient to manage the
entire network. The latency progressively decreasing on the
increasing of the number of FNs. From Figure 3 (a), 3 (b),
and 3 (c) it can be seen that as we are increasing the number of
IoT devices , the average latency of FND PSO algorithms is
usally relatively stable in comparison to the FND GA and
FND Random placement. It is quite essential to observe
that the proposed algorithms find the appropriate number and
locations of the FNs, FCs, and SDN-Cs which exploits the
performance of the IoT services in the network.

Algorithm 3: FND GA

Input: co ordinates nodes(x, y), No FN , No FC,
No SDN C

Output: cost, position

1
Initialize Population size , crossover probability,
mutation probability

2 GFNposition ←
Random (coordinates nodes (x, y) , No FN))

3 GFCposition
←

Random (coordinates FNs (x, y) , No FC))
4 GSDN C position ←

Random (coordinates FCs (x, y) , No SDN C))
5 for it = 1 to MAX ITERATIONS do
6 for i = 1 to N do
7 Calculate FCS Network with the Fitness

function using GFNposition
, GFCposition

,
GSDN C position and Delay Matrices

8 Select new population using roulette wheel
method

9 Select individuals with crossover probability to
apply two pint crossover

10 Select individuals with mutation probability to
apply mutation

11 return FCS Network, positions

V. CONCLUSION

In this paper, the Fog Network Design for large scale IoT
applications has been reviewed. We first proposed a multi-
objective mathematical model for the multi-tier fog network
design. For the solution of these types of problem instances,
we apply the weighted sum algorithm and two population
based meta-heuristic algorithms have been proposed identi-
fied as FND PSO and FND GA and compare it with
FND Random approach. With regards to this, aforemen-
tioned work optimizes a set of metrics such as latency, traffic
and cost to design Fog network. It is necessary to notice
that the suggested algorithms finds the best possible number
and position of the FNs, FCs and SDN-Cs which provide
the better service in the IoT network.The simulation result
shows that FND PSO produces the optimum result. It is an
important issue of managing the network when it is deployed
in real world scenario. We can approach toward an systematic
expertise of day to day management of these Fog nodes by
switching them on/off.
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