

Investigation of Cation Distributions and Temperature-dependent Magnetic Properties of Polycrystalline CoFe₂O₄

A. Barik, M. R. Sahoo, Sweta Tiwary, R. Ghosh and P. N. Vishwakarma* Department of Physics and Astronomy, National Institute of Technology Rourkela, Odisha- 769008, India

Abstract

Phase-pure cobalt ferrite [CoFe₂O₄ (CFO)] nanoparticles are prepared by sol-gel autocombustion technique in order to study its structural and magnetic properties. The presence of mixed spinel cubic structure (space group= Fd-3m) is confirmed from the Rietveld refinement of X-ray diffraction (XRD) patterns and Raman spectra study. X-ray photoelectron spectrum (XPS) suggest the existence of Co^{+2} and Fe^{+3} ions. Analysis of the magnetic data shows that coercivity, remanence and saturation magnetization decreases with increase in temperature.

Introduction

 \blacktriangleright Magnetic oxide (AB_2O_4) has attracted much attention because they have multiple applications in many fields of science (medicine, magnetic recordings, etc.). \succ Cobalt ferrite [CoFe₂O₄] have earned special interest high coercivity, of its cubic because magnetocrystalline anisotropy, moderate saturation magnetization. > It exhibit ferrimagnetism with high Curie temperature of $T_c \sim 790$ K (bulk) and crystallizes in cubic spinel structure (Fd-3m). \succ (Co_{1-x}Fe_x)_T[Co_xFe_{2-x}]_OO₄, where T and O represents tetrahedral and octahedral sites respectively. For inverse spinel structure x=1 and if x=0 it is normal spinel otherwise it is in mixed spinel structure. \triangleright Particle size and distribution of cations has a huge impact on the electric and magnetic properties.

		_	F	— Esperimental Da	rta
-O-Lobs Icalic Iobs-Lobic Bragg peaks	G Fd-3m (Cubic) a=b=c= 8.3848(1)Å	$R_{\mu\mu} = 18.9$ $R_{\mu\mu} = 6.34$ $R_{\mu\mu\rho} = 3.68$ $\chi^2 = 2.95$		$-T_{2g}^{(1)}$ $-E_g$ $-T_{2g}^{(2)}$ $-T_{2g}^{(2)}$	469 cm ⁻¹
	Cell volume= 589.51(1)A"	8	ii -	-A _{1g} (2)	1

Results and discussions

The crystallite size is calculated from (311) diffraction peak using the Scherrer equation and is found to be

Objectives

Systematic study of cationic distributions through the results of XRD, Raman spectroscopy, XPS and magnetic measurements in order to deduce the conclusive mechanism for the distribution of cations.

35 nm. λ = 532 nm P, = 5 mW

> FIGURE 1. Room temperature Rietveld refined XRD patterns (a) and deconvoluted Raman spectrum (b) of CFO confirms the single phase mixed spinel structure.

Inhomogeneous distribution of particles ~50-100 nm in size along with presence of a small amount of pores. EDS spectra confirmed the presence of Co, Fe and O elements.

FIGURE. 2. FESEM image and EDS spectra of pure CFO nanoparticles.

The Fe are and individually deconvoluted two 1nto peaks corresponding to Fe^{+3} at O and Tsites. Similarly in high resolution XPS spectra for Co 2p, the Peaks that are observed at 779.8 and 782.3 eV are for O and T-sites Co $2p_{3/2}$ respectively and at 795.3 and 797.2 eV for O and T sites Co $2p_{1/2}$.

Structural analysis:

- X-ray diffractometer (Rigaku Ultima IV) using $Cu-K_{\alpha}$ radiation $(\lambda = 1.5405 \text{ Å})$ with a step size of 0.02° at a slow scanning rate of $2^{0}/{\rm min}$.
- Raman spectra is collected using micro-Raman spectrometer (WITEC ALPHA 300R), with an excitation wavelength of 532 nm and a power of 5 mW.
- X-ray photoelectron spectroscopy (XPS) studies are carried out on a Photo-emission Electron Spectroscopy (PES) beamline (BL-14)

FIGURE. 3. XPS spectra of CFO measured at room temperature: (i) wide-scan (0-1000 eV), (ii) Fe 2p, (iii) Co 2p and (iv) O 1s.

of Indus-2 synchrotron source.

Magnetic study:

VSM Lakeshore 7040.

Conclusions

- The polycrystalline CFO is successfully synthesized by sol-gel auto combustion method. Detailed analysis of Rietveld refinement of XRD patterns along with the deconvoluted Raman spectrum confirms the mixed cubic spinel structure of CFO having space group *Fd-3m*.
- XPS results revealed the presence of Co⁺² and Fe⁺³ ions and are distributed in both tetrahedral and octahedral sites.
- Based on the temperature dependence of magnetic properties study, the Curie temperature is obtained to be ~840 K.

Acknowledgements

The authors are thankful to U. K. Goutam from RRCAT, Indore for XPS measurement.

DÔE

सत्यमेव जयते Science and Tech DST

References

- 1. D. Zhang, Z. Liu, S. Han, C. Li, B. Lie, M. P. Stewart, J. M. Tour, and C. Zhou, Nano Lett. 4, 2151 (2004).
- 2. A. Franco junior, and F. C. e Silva, , Appl. Phys. Lett. 96, 172505 (2010).
- 3. P. N. Anantharamaiah, and P.A. Joy, J. Appl. Phys. 121, 093904 (2017).
- 4. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi and R. Xiong, Appl. Surf. Sci. 254, 6972 (2008)
- 5. M. Atif, M.W. Asghar, M. Nadeem, W. Khalid, Z. Ali, and S. Badshah, J. Phys. Chem. Solids. 123, 36 (2018).

List of published papers

- **A. Barik**, M. R. Sahoo, S. Kuila, S. Tiwary and P. N. Vishwakarma, J. Magn. Magn. Mater. 495, 165880 (2020).
- □ A. Barik, S. Kuila, S. Tiwary, M. R. Sahoo, and P. N. Vishwakarma, AIP Conference Proceedings 2115, 030528 (2019).
- □ M. R. Sahoo, A. Barik, S. Kuila, S. Tiwary and P. N. Vishwakarma, J. Appl. Phys. 126, 074104 (2019).
- □ S. Tiwary, S. Kuila, M. R. Sahoo, A. Barik, P. D. Babu and P. N. Vishwakarma, J. Appl. Phys. 124, 044101 (2018).

*To whom correspondence should be addressed:- prakashn@nitrkl.ac.in