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Abstract 
 This article presents Discrete Ordinate and Finite Volume methods for modeling radiation heat transfer processes. In 
order to provide a focus to this article, only the Finite Volume method is described in detail. The discrete-ordinates 
method and its variants are discussed where it is needed. A detailed formulation of the radiative transport problem using 
the finite volume method is presented. The solution methodology using the Finite Volume method is briefly described.     

Nomenclature 
 a  coefficient of the discretization equation 
A area of control volume faces 
b source term in the discretization equation 

l
cD  direction cosine integrated over l∆Ω  

zyx eee ˆ,ˆ,ˆ  unit vectors in x, y, and z directions 
I intensity 
L number of control angles 
n̂  unit outward normal vector 
s distance traveled by a beam 
S source function 
t time 
x, y, z coordinate directions 
β extinction coefficient 

V∆  volume of control volume 
l∆Ω  control angle 

ε wall emissivity 
κ absorption coefficient 
µ, ξ direction cosines in x, y directions 
α, γ mass flow rate per unit area (Eq. 10) 
ρ density or wall reflectivity 
θ polar angle measured from  zê
σ Stefan-Boltzmann constant or scattering coefficient 
φ azimuthal angle measured from  or general dependent variable xê
w angular weight 
Φ scattering phase function 
 
Subscripts 

b blackbody 
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E, W, N, S east, west, north, and south neighbors of P 
e, w, n, s east, west, north, and south control-volume faces 
P control volume P 
x, y, z coordinate directions 
 
Superscripts 

ll ′,  angular directions 

1 Introduction 
   The number of publications on radiation heat transfer procedures has increased rapidly over the past few years. As a 
result, a comprehensive review of all literature dealing with the subject will not be attempted here. In order to provide a 
focus to this article, only the Finite Volume (FV) method is described in detail. The discrete-ordinates (DO) method and 
its variants will be discussed when their inclusion is needed.  

 As mentioned earlier, this article focuses on the method of solution rather than on the different physical models. As a 
result, nongray models, which are very important for a variety of applications, are not discussed here. Combined mode 
heat transfer (combined diffusion, convection and radiation) is also not considered in this article. 

 This article focuses on presenting a numerical method for radiative heat transfer processes. It is based on the finite-
volume (FV) method [14, 20, 33]. The main elements of the calculation procedure were presented by Chai and co-
workers [20, 24, 25, 46, 55, 57]. This article presents much of the same material in a condensed form. Readers are 
referred to Chai and Patankar [46], Siegel and Howell [48], and Modest [53], for more thorough collections of articles 
on the FV and DO methods for radiative transfer. 

1.1 Outline of the Article 
 This chapter is divided into ten sections. The equations governing radiative heat transfer i.e. the transient radiative 
transfer equation (TRTE), boundary conditions and other related relations are presented in Section 2. Before presenting 
the FV method for radiation heat transfer, a discussion of the flux, DO and FV methods is given in Section 3. Section 4 
shows the discretization of the spatial and angular domains. The TRTE is converted into a set of algebraic equations in 
Section 5. Other details related to the discretization of the TRTE are also discussed in this section. Spatial differencing 
schemes are discussed in section 6. Treatment of irregular geometries using FV method is discussed in section 7. 
Shortcomings of the FV method like the ray effect and the false scattering are discussed in section 8. Some 
prepresentative works on DO and FV methods are presented in section 9 followed by some concluding remarks given in 
section 10. 
 
2 Governing Equations and Related Quantities 

 The equations governing the “transport” of radiant energy, boundary conditions, scattering phase function and other 
related quantities are presented in this section. 

2.1 Transient Radiative Transfer Equation 
 The TRTE for a gray medium can be written as 
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 From Eq. (1), it is clear that radiant intensity I depends on spatial position r
r

 and angular direction . The solution of 
Eq. (1) requires the specification of the boundary conditions. Although the method described in this chapter can handle 
non-diffuse and semitransparent surfaces, only opaque diffuse surfaces are described for simplicity. 

ŝ

2.2 Boundary Condition for an Opaque Diffuse Surface 
 The radiant intensity leaving an opaque diffuse surface contains emitted and reflected energy. This can be written as 
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 Equation (2) provides the boundary intensity for the TRTE. 
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2.3 Scattering Phase Function 

 The scattering phase function Φ in the TRTE describes how radiant energy is scattered by a participating medium. 
Scattering can be classified into two categories. These are isotropic and anisotropic scattering. Isotropic scattering 
scatters energy equally into all directions. Anisotropic scattering can be further divided into backward and forward 
scattering. Backward scattering scatters more energy into the backward directions, while forward scattering scatters 
more energy into the forward directions. Scattering phase functions satisfy 
 

  (3) ( ) π
π

4ˆ,ˆ
4

=Ω′′Φ∫ dss

2.4 Radiation Heat Transfer Relations 
 A few useful quantities are defined in this subsection for ease of reference. The incident radiation is defined as  

  (4) ( ) ( )∫ Ω=
π4

,ˆ,, dtsrItrG
rr

 The radiative heat flux in direction i is defined as  

  (5) ( ) ( )( )∫ Ω•=
π2

ˆˆ,ˆ,, distsrItrqi
rr

where  is the unit vector pointing in the i direction. For example, the radiative heat flux in the x direction is  î

  (6) ( ) ( )( )∫ Ω•=
π2

ˆˆ,ˆ,, destsrItrq xx
rr

 The divergence of the radiative heat flux is 

 ]( ) ( )[ trGtrIq b ,,4
rr

−=•∇ πκ  (7) 

 Equation (7) defines an important quantity in combined mode heat transfer as well as in radiation-dominated 
processes. In the absence of a heat source/sink, a system is in radiative equilibrium if other modes of heat transfer are 
absent. Under such condition, 0=•∇ q , and the temperature of the medium can be obtained from Eq. (7). In combined 
mode heat transfer processes with a participating medium, q•∇  is the radiation source term in the energy equation. 

3 THE FLUX, DISCRETE-ORDINATES AND FINITE-VOLUME METHODS 
 A brief overview of the flux, DO and FV methods is given in this section. Since radiant intensities have to be resolved 
in both the angular and spatial domains, a complete discretization procedure should show these two discretizations. 
However, the main difference in the flux, DO and FV methods lies in the treatment of the angular space. Therefore, this 
section focuses on the discretization of the angular space. Spatial discretization practices will be discussed in a later 
section. A detailed evaluation of the relations among the three methods is given at the end of this section. 

3.1 The Flux Method 
 The flux method, also known as the Schuster-Schwarzschild approximation, was proposed by Schuster [1] and 
Schwarzschild [2] for one-dimensional radiative transfer. The actual intensities (Fig. 1a) are approximated by dividing 
the 4π solid angle into two solid angles (one in each coordinate direction). The magnitude of the radiative intensity over 
the positive coordinate direction is assumed uniform. The magnitude of the radiant intensity in the negative coordinate 
direction is also assumed to be uniform but is allowed to be different from the magnitude of the intensity in the positive 
coordinate direction. Radiant energy is allowed to travel in all directions within the positive and negative coordinate 
directions. This approximation is depicted in Fig. 1b and can be written as 

  (8) 
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 For isotropic scattering (Φ = 1), the Radiative Transfer Equation (RTE) for the positive coordinate direction can be 
written as 
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 Integrating Eq. (9) over the positive coordinate hemisphere gives 
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Figure 1 Radiant intensity distribution: (a) actual intensity, (b) two-flux method. 
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 A similar equation for the negative coordinate direction can be written as 
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 In summary, the two-flux method divides the angular space into two solid angles (one in each coordinate direction) in 
which the magnitudes of the radiant intensities are assumed constant. Radiation is allowed to travel in all directions 
within each solid angle (see Fig. 1b). This approach reduces the RTE to two ordinary differential equations, which can 
be solved using any convenient method. If the spatial domain is discretized into a finite number of control volumes, a 
discretization equation can be formulated for each control volume, and appropriate solution procedures can be 
employed to solve the resulting set of algebraic equations. 

3.2 The Discrete-Ordinates Method 
 Most solution procedures for radiation heat transfer, including the DO method, were developed for astrophysics and 
neutron transport applications. Khalil and Truelove [6] and Fiveland [8-10] adopted the DO method to model radiative 
heat transfer processes and reported DO solutions for radiation heat transfer problems. Over the past few years, there 
has been a tremendous increase in the number of papers on the modeling of radiation heat transfer using the DO 
method. Due to its popularity, it is appropriate to examine the DO method and compare it with the flux and FV 
methods. 

 Chandrasekhar [3] proposed the DO method in 1960. It was realized that the two-flux method could not accurately 
model anisotropic scattering with the two-solid-angle discretization practice. In the DO approximation, the actual 
radiation field (Fig. 2a) is divided into a finite number of discrete directions (Fig. 2b). The RTE at a discrete direction 
for one-dimensional problems can be written as  

 ∑
=′

′′′Φ++−=
L

l

llll
b

l
l

l wIII
dz
dI

14π
σκβµ  (11) 

 

z 

y 

        

z 

y 
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Figure 2 Radiant intensity distribution: (a) actual intensity, (b) DO method. 
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 For nonscattering media in a black enclosure, radiant intensity along any direction can be calculated directly from Eq. 
(11) without solid-angle reference. These angular directions can, in principle, be chosen arbitrarily. However, several 
procedures have been developed to generate quadrature sets (ordinate directions and angular weights) that integrate the 
radiant energy and inscattering terms accurately. Therefore, exact locations of these angular directions are chosen such 
that the products of the angular directions and their weights satisfy certain full-range and half-range moment 
constraints. 

 The full-range moments are also important if the scattering phase function in the RTE is to be evaluated correctly. 
Since most quadrature sets do not integrate the scattering phase function correctly, phase functions are normalized to 
ensure that Eq. (3) is satisfied. This normalization can be written as 

 1
4
1

1

=Φ∑
=′

′′
L

l

lll w
π

 (12)  

 This problem is avoided in the FV method. 
 
3.3 The Finite-Volume Method 
 The FV method for radiation heat transfer presented in the literature has formulated the discretization equation by 
integration over both spatial control volume and angular control (solid) angle. For the purpose of this discussion, spatial 
and temporal discretization is deferred and only angular discretization is considered. A typical control (solid) angle is 
shown in Fig. 3. 

 Integrating the RTE over a control angle (Fig. 3) gives 
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 For a one-dimensional problem, the left side of Eq. (13) can be written as 
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Figure 3 Control (solid) angle for the FV method. 
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Figure 4 Radiant intensity distribution: (a) actual intensity, (b) FV method, (c) two-control-angle FV discretization, (d) 
discrete direction discretization. 

 In the control volume approach, the intensity is assumed constant within a control angle (Fig. 4b). Equation (14) can 
be simplified to 
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 When two control angles (one in each coordinate direction), as shown in Fig. 4c, are used to discretize the angular 
space in an isotropically scattering medium, Eq. (15) becomes 
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 These two equations are identical to the equations obtained by the two-flux method. 

 For an isotropically scattering medium, if radiant energy is allowed to travel along discrete directions as shown in Fig. 
4d, Eq. (14) can be simplified to  
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which is the RTE for the DO method (Eq. 11). When a quadrature set that satisfies the half-range first moment is used, 
Eq. (19) reduces mathematically to the two-flux equation. 

3.4 Closure 
 From the above discussion, for one-dimensional problems, the FV method is a higher-order flux method. The 
discretization equation is formulated by integrating the RTE over a discrete solid angle. In both the two-flux and FV 
methods, the magnitude of the radiant intensity is assumed uniform over a control angle. Radiation is allowed to travel 
in all directions within a solid angle. When two control angles (one in each coordinate direction) are used, the FV 
method always reduces to the two-flux method. 

 In multi-dimensional problems, the philosophy of the FV method is slightly different from the philosophy of the four-
flux or six-flux methods. The FV method usually does not divide the angular space along the four or six coordinate 
directions as in the flux method. However, the angular discretization practice employed by the four-flux or six-flux 
methods can of course be accommodated by the FV method. 

 In the DO method, radiant energy is allowed to travel along discrete directions [3]. There is no solid angle integration. 
For non-scattering media in a black environment, radiant intensity along any direction can be calculated directly 
without solid angle reference. These angular directions can, in principle, be chosen arbitrarily. However, several 
procedures have been developed to generate quadrature sets (ordinate directions and angular weights) that integrate the 
radiant energy and inscattering terms accurately. When a S2 quadrature set which satisfied the half-range first moment is 
used in one-dimensional problems, the resulting RTE is mathematically similar to that of the two-flux and the FV (with 
two control angles) methods. However, these equations are obtained using very different principles. The RTE for the 
DO method can be obtained from the FV method if the radiant energy is restricted to travel along discrete directions. 

4 DOMAIN DISCRETIZATION 
 The numerical method described here is based on the control volume approach. Discretization equations are 
formulated by integrating the RTE over control volumes and control (solid) angles. Control volumes and control angles 
are subdivisions of the spatial and angular spaces respectively. The next subsections describe these subdivisions. 

4.1 Control Volumes and Grid Points 
 For ease of discussion, a two-dimensional spatial domain is used in this section. Figure 5a shows a structured grid for 
a rectangular domain. Figure 5b shows an unstructured grid for the same geometry. The term unstructured is used here 
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to refer to computational grids without any structured order in the x- and y-directions. It is understood that with proper 
indexing, an unstructured grid procedure can be used on the grid shown in Fig. 5a. 

 The control volume boundaries (dashed lines) are drawn first. Grid points are then placed at the geometric centers of 
the control volumes. Control volume faces should be designed to capture “discontinuities” (see shaded regions of Figs. 
5a and 5b) in physical properties, boundary conditions and sources. 

4.2 Control Angles 
 Similar to the spatial discretization, the angular space is discretized by placing control (solid) angle boundaries 
throughout the 4π solid angle. Although unstructured control angles can be used with the FV method, only structured 
control angles are discussed in this chapter. 

 Figure 6a shows a possible angular discretization. The simplest angular discretization is to divide the angular space 
into Nθ x Nφ control angles with equally spaced ∆θ and ∆φ. The size of these control angles can be adjusted to capture 
the physics of the problem at hand. For example, collimated incidence can be captured by designing a control angle 
with small ∆θ and ∆φ. Figure 6b shows how collimated incidence can be captured using the present method.  
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Figure 5 Spatial grids: (a) structured grid, (b) unstructured grid. 
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Figure 6 Angular grids: (a) typical, (b) collimated beam. 

5 DERIVATION OF THE DISCRETIZATION EQUATION 
 The discretization equation is the counterpart of the general differential equation (Eq. 1). It is obtained by integrating 
the TRTE over a typical control volume (Fig. 7a), a control angle (Fig. 7b) and a differential time. Before proceeding 
with the formulation of the discretization equation, it is important to examine the various possibilities in the definition 
of the angular direction  .̂s
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Figure 7 Typical (a) control volume, (b) control angle, (c) control angle orientation. 
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5.1 Angular Direction 
 A radiation direction is defined using a set of base vectors. There are at least three common alternatives. These are (1) 
Cartesian base vectors, (2) cylindrical base vectors, and (3) spherical base vectors. When Cartesian spatial grids are 
used, the choice of base vectors is obvious. However, when non-Cartesian spatial grids are encountered, cylindrical 
base vectors are the natural choice for cylindrical spatial grids. Similarly, spherical base vectors are the choice for 
spherical spatial grids. It should be pointed out that the orientation of the Cartesian base vectors does not change with 
spatial location; thus, a set of fixed values for (θ, φ) defines the same direction at any spatial location. The orientation of 
the cylindrical and spherical base vectors changes with the spatial location. Since the TRTE describes the change in 
radiant intensity along a straight-line path, an additional term called the angular redistribution term appears when non-
Cartesian base vectors are used. Moder et al. [25] presented a detailed discussion of the angular redistribution term. 

 Since the purpose of this chapter is to present a procedure which is applicable to all spatial grid systems (including 
non-orthogonal and unstructured grid systems), the radiation direction is defined using the Cartesian base vectors. 
Therefore, the angular direction (Fig. 8) can be described by the unit vector 

 ( ) ( ) ( ) zyx eees ˆcosˆsinsinˆcossinˆ θφθφθ ++=  (20) 
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yê

xê

zê

φ 

θ 

 
Figure 8 A typical angular direction. 

 Although this choice eliminates the angular redistribution term in the TRTE, control angle overlap (also called control 
angle overhang [25]) can appear when non-Cartesian grids are used.  

5.2 Linearized Transient Radiative Transfer Equation 
 In the FV method, the magnitude of the intensity is assumed constant over a control angle. For control angle l, the 
right side of Eq. (1) can be written as 
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where ( tsrII l ,ˆ, )r
≡ . The in-scattering term is summed over all the control angles used to discretized the angular 

domain, L. In Eq. (21), ll′Φ  is the average scattering phase function from control angle l  to control angle l to be 
discussed later. A modified extinction coefficient  and a modified source function  can be written as [21] 
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mβ l
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 Using these variables, a linearized TRTE can be written as 
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 In scattering media, two observations can be drawn from Eqs. (22)−(24). First, the modified source function no longer 
contains the intensity of interest,  This reduces the magnitude of the source function. Since the source function is .lI
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obtained using the values from the previous iterations, this treatment reduces the dependence of the current iteration on 
the previous iteration. Second, the modified extinction coefficient scales the optical thickness of a problem and leads to 
a reduced effective optical thickness. 

5.3 Mathematical Formulation 
 This section presents the formulation of the discretized form of the linearized TRTE (Eq. 24). Integrating Eq. (24) 
over a typical control volume (Fig. 7a), a typical control angle (Fig. 7b) and a chosen time step gives 

 ( )∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫
∆ ∆Ω ∆∆ ∆Ω ∆∆Ω ∆ ∆
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 Applying the divergence theorem to the second term of Eq. (25), the following can be written  
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 In Eq. (26),  is the unit outward normal vector shown in Fig. 7a. Physically, the first term of Eq. (26) accounts for 
the changes of the radiant intensities with time. The second term of Eq. (26) denotes the “inflow” and “outflow” of 
radiant energy across the control volume faces. The last term represents the attenuation and augmentation of energy 
within a control volume and control angle. 

n̂

 Following the FV practice, the magnitude of the intensity is assumed constant over a control volume and a control 
angle. The unsteady term of Eq. (26) can then be written as 
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 In Eq. (27), , and  are the nodal intensities at the start and at the end of the time step respectively. In the 
evaluation of the remaining terms of Eq. (26), the choice of the intensities is not apparent. When the fully implicit 
scheme is used, the remaining terms of Eq. (26) can be written as 

0,l
PI l

PI
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 In Eq. (28a), the summation is performed over all control volume boundaries (or interfaces) and  is the intensity at 
the interface of interest. Combining Eqs. (27) and (28) gives 

l
iI

 ( ) ( ) ( ) tVSIdnstAIVII
c

ll
Pm

l
P

l
Pm

l
i

l

i
i

l
i

ll
P

l
P

l

∆∆Ω∆+−=Ω⋅∆+∆Ω∆− ∫∑
∆Ω

  ˆˆ 1
,,

0, β  (29) 

 For the control volume and control angle orientation shown in Fig. 7c, Eq. (29) can be written as 
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 The areas Ae and Aw (also An and As) are equal for Cartesian coordinates. Separate symbols are used for generality. A 
spatial differencing scheme is needed to relate the boundary intensities to the nodal intensities. One such scheme is the 
step or “upwind” scheme that sets the boundary intensities to the “upstream” nodal intensities. For the situation shown 
in Fig. 7c, Eq. (30) becomes 
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 Equation (32) can be written as 
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 A more compact form of the discretization equation suitable for control angles pointing in all directions can be written 
as 
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where  and  are additional sources due to high-resolution spatial differencing schemes [33]. Other quantities 
are already defined in Eq. (31) and are not repeated here. 
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5.4 Scattering Phase Function 
 As mentioned in Section 2.3, the scattering phase function Φ must satisfy  

  (37) ( ) π
π

4ˆ,ˆ
4

=Ω′′Φ∫ dss

 When a phase function is known analytically, Eq. (37) can be evaluated analytically and satisfied exactly. The average 
phase function can then be calculated using 
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ˆ,ˆ

 (38) 

 For complicated scattering phase functions, analytic evaluation of Eq. (37) can be computationally intensive or 

impossible. Although it is possible that the exact evaluation of  might not be possible for certain scattering ( )∫ Ω′′Φ dss ˆ,ˆ
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phase functions, the value of ll′Φ , which is the scattering from a discrete radiant direction  into , must be known 
before a solution to the problem can be obtained. As a result, the approach presented here assumes that  is known. 

s ′ˆ ŝ
ll′Φ

 When  is known, it is possible to approximate Eq. (37) using  ll′Φ

  (39) ( ) ∑∫
=′

′′ ∆ΩΦ≈Ω′′Φ
L

l

llldss
14

ˆ,ˆ
π

 However, since  is the scattering from a discrete radiant direction ll′Φ s ′ˆ  into  the approximation will not satisfy 
Eq. (37) unless scattering is isotropic. As a result, phase function renormalization similar to the approach used in the 
DO method (Eq. 11) is required. An improved approach [20], which ensures the satisfaction of Eq. (37), is described 
next. 

,ŝ

 In this approach, the control angles  and l′∆Ω l∆Ω  are subdivided into smaller sub-control angles as shown in Fig. 9. 
The total energy scattered from  into  is l′∆Ω l∆Ω
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Figure 9 (a) Typical control angles, (b) possible sub-control angles. 

where  and  are the numbers of sub-control angles in sL′ sL l′∆Ω  and l∆Ω respectively. For the example shown in Fig. 

9b, . The scattering phase functions 6==′ ss LL ssll′Φ  are evaluated along discrete radiant directions  and . The 
average scattering phase function is then calculated using 

sl′ sl
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 (41) 

 Using this approach, Eq. (37) is satisfied accurately. 

5.5 Solution Procedure 
 The FV discretization results in a set of algebraic equations with the radiant intensities as the unknowns. Within each 
time step, an iterative method is used to solve the resulting set of equations. A marching order can be employed to 
efficiently solve the set of equations. For Cartesian grid problems, a possible marching order for a control angle 
pointing in the first quadrant is shown in Fig. 10. Extensions to the other three quadrants are straightforward and are left 
to the exploration of interested readers. The details of the program structure of using the FV method for solving the 
radiation heat transfer problems can be found in the user manual RAT [54]. The solution procedure for the situation 
depicted in Fig. 10 is summarized below for completeness. 

1. Specify the initial intensity distribution for the whole domain. 
2. Advance the time step to t + ∆t. 
3. Set the initial or the most current nodal intensities as the guessed values. 
4. Update the “upstream” boundary intensities (left and bottom walls for the situation depicted in Fig. 10). 
5. Following the marching order depicted in Fig. 10, calculate the nodal intensities for all internal control 

volumes. 
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6. Calculate the radiation arriving and leaving the right and top walls. 
7. Return to step 4 and repeat the calculations until convergence. 
8. Stop when the desired time is reached or go to step 2 to advance to a new time step. 

x 

y ∆Ωl 

 
Figure 10 A possible marching order. 

6 SPATIAL DIFFERENCING SCHEMES 
 The step scheme is used in the discretization equations presented in Section 5.3. The step scheme, although bounded, 
produces false scattering (see Section 8), which decreases the accuracy of the solution. Chai et al. [22] presented a 
study on spatial differencing schemes for radiation heat transfer. The study indicates that control volume boundary 
intensity should be calculated by tracing a beam to an appropriate “upstream” location where the intensity is known or 
can be approximated. The skewed “upwind” spatial differenting scheme (SUDS) of Raithby [5] is also used in radiation 
heat transfer problems which can be found in Chui and Raithby [18] and Chai et al. [20]. 

 The step scheme produces reasonable solutions for steady-state problems. In transient problems, it fails to capture the 
penetration depth accurately during the initial transient [55, 57]. As a result, a bounded, high resolution scheme should 
be used. The  and  in Eqs. (36c) and (36d) are the additional sources due to high resolution schemes. Jessee 
and Fiveland [30] examined some high-resolution schemes for the DO method. The CLAM [4] scheme was 
recommended. Chai [55, 57] showed that the CLAM scheme captures the initial transient quite accurately. It should be 
pointed out that the additional source or sink terms for some high-resolution schemes can be negative. This can lead to 
negative intensities. Physically, radiant intensity is an always-positive variable. Therefore, negative intensity is 
physically unrealistic. The discretization equation should not allow the possibility of negative intensity as a solution. 
The always-positive variable treatment of Patankar [7] can be used to eliminate this possibility.  

l
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l
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7 TREATMENT OF IRREGULAR GEOMETRIES 
 The procedure outlined above can be used to solve radiative transfer problems that can be described using Cartesian 
grids. Procedures for cylindrical geometries were reported by Moder et al. [25], Chui et al. [16], Kim and Baek [29] and 
Murthy and Mathur [34]. Irregular geometries can be handled using the blocked-off region procedure [23], spatial-
multiblock procedure [27], body-fitted grids [18, 24, 32], and unstructured grids [33, 36, 41-44]. The blocked-off region 
procedure and spatial multiblock procedure are discussed below. 

7.1 Blocked-Off Region Procedure 
 A simple procedure to model irregular geometries was presented by Chai et al. [23]. Only a brief description of the 
concept is presented here. Interested readers should refer to the above article. With this approach, the real domain 
shown in Fig. 11a is modeled using a nominal domain shown in Fig. 11b. The nominal domain is divided into two 
regions. These are (1) the active (unshaded) region, where solutions are sought, and (2) the inactive (shaded) region, 
which lies outside the real boundary; thus, solutions are not meaningful.  

 For irregular geometries with vertical or horizontal surfaces, the irregularities are captured exactly and no additional 
approximations are introduced by using the appraoch. Inclined and curved (Fig. 11c) boundaries can also be modeled 
using the proposed procedure. The inclined surfaces are however, approximated using staircase-like irregular 
geometries consist of vertical and horizontal surfaces. As a result, additional approximations are introduced in the 
modeling of inclined or curved surfaces. 
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 (a) (b) (c) 

Figure 11 Irregular geometries: (a) real boundary condition, (b) simulated vertical and horizontal walls, and (c) 
simulated curved wall. 

7.2 Spatial-Multiblock Procedure 
 The spatial-multiblock procedure divides the solution domain into a finite number of spatial blocks where spatial grids 
can be generated easily. Figures 12a and 12b show a situation where spatial-multiblock is beneficial. When body-fitted 
grids are used (Fig. 12a), significant changes in the aspect ratio of the grids are encountered in regions with large area 
variation. Figure 12b shows a spatial-multiblock grid. Fine grids can be embedded into selected region(s) as shown. 
Another possible benefit of spatial-multiblock lies in the fact that simpler spatial grids can be used to model complex 
geometries. The T-shaped enclosure shown in Fig. 12b is modeled using Cartesian grids. Figure 12c shows a situation 
where fine spatial grids are needed at one corner of the solution domain. When a single-block procedure is used, 
unnecessarily fine grids are also used in part of the remaining domain. A spatial-multiblock procedure can be used to 
eliminate this problem. Figure 12d shows a sample spatial-multiblock procedure for this problem. Fine grids are 
employed at the appropriate region of the domain. A method that ensures the conservation of radiant energy between 
blocks was presented by Chai and Moder [27]. 

             
 (a) (b) (c) (d) 

Figure 12 Spatial grids: (a) single-block, (b) multiblock, (c) single-block, (d) multiblock. 

8 RAY EFFECT AND FALSE SCATTERING 
 The FV method presented in this chapter, when used properly, is a flexible, efficient and accurate procedure for 
radiation heat transfer. However, similar to other numerical methods, the FV method for radiation heat transfer is not 
without shortcomings. If the FV method is to be used as the procedure of choice, it is important that these shortcomings 
are well understood. An in-depth discussion of two types of error, namely, the ray effect and the false scattering can be 
found in Chai et al. [19] and a possible remedy can be found in Li et al. [49].  

9 REPRESENTATIVE WORKS 
 Significant advances in the modeling of radiative heat transfer have been reported using the DO and FV methods. Due 
to the volume of publication, a comprehensive review of the literature on these methods is not attempted. Selected 
publications are included here as a starting point for readers interested in further exploration. More complete collections 
of articles on the DO and FV methods can be found in Chai and Patankar [46], Siegel and Howell [48] and Modest [53]. 
The DO method has been used to model radiative transfer in Cartesian [9, 11, 12, 28, 38], cylindrical [8, 15, 17, 25], 
and irregular geometries [37, 39]. Truelove [11] presented ways to generate various moment-matching quadratures. 
Kim and Lee presented results for anisotropic scattering with collimated incidence [13]. The FV and DO methods were 
compared with the discrete transfer method by Coelho et al. [39]. Some representative articles on FV method can be 
found in Refs. [31, 35, 45]. Recently, the DO and FV methods have been used to study transient radiative transfer [40, 
47, 50-52, 55-58]. 

10 CLOSING REMARKS 
 This article has described a numerical procedure for multidimensional radiative transfer process. Although most of the 
discussions are based on the FV method, major parts of this chapter are also valid for the DO method. This is due to the 
close similarity between the two methods. Both FV and DO methods have been thoroughly tested and widely used. The 
methods can provide accurate solutions for both steady-state and transient processes. Extensions to model non-gray 
radiation, non-diffuse walls and semitransparent media have also been reported.  
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