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A class of upper-bound solutions for the extrusion of square 
shapes from square billets through curved dies 
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Industrial summary 

An upper-bound analysis is proposed tbr the extrusion of square sections from square billets through curved dies having 
prescribed profiles. Kinematically-admissible velocity fields for the purpose are derived using the dual-stream-function technique. 
Analytical results are presented for both frictionless trod stir:king friction conditions; for the latter situation the die geometry has 
been optimised with respect to appropriate parameters, h is shown that a cosine-shaped die with zero entry and exit angles yields 
the lowest extrusion pressure in the absence of friction, whilst the best upper-bound i,; provided by a straight tapered die under 
sticking-friction conditions. The internal work of deformation, however, is still found to be minimum for a straight die for 
fricfionless extrusion. 
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1. Introduction 

A number of analytical studies have been carried out 
during the past few years to compute the deformation 
loads for the extrusion/drawing of metals through 
curved dies. Such studies were initiated due to the use 
of these dies rendering the deformation more homoge- 
neous with consequent reduction in the deformation 
load. Hence, for metals that are either difficult to form 
or where the temperature rise is to be minimized to 
protect the metallurgical structure of the deformed 
product, these dies can be used with advantage. The 
geometry of an ideal streamlined wire-drawing die ol 
perfect efficiency was first proposed by Richmond and 
Devenpeek [1], the proposed die profile being sigmoidal 
with zero entry and exit angles, so that no tangential 
velocity discontinuities were introduced. Further, using 
slip-line-field analysis, it has been shown that for such 
dies the load is equal to that for homogeneous com- 
pression [2]. 

Slip-line-field solutions for some other die shapes 
have also been presented. Thus, for extrusion through 
cosine-shaped die, slip-line-field solutions were obtained 
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by Samanta [3] and for parabolic-~haped dies by 
Bacharach and Samanta [4]. General upper-bound solu- 
tions Ibr axi-symmetric extrusion through curved dies 
have been obtained by Chen and Ling [5] ahd Chang 
and Choi [6], with the foregoing analysis being used by 
Yang et al. [7] to determine the geometry of streamlined 
dies for axi-symmetric extrusion. Experimental results 
for extrusion through mathematically-contoured dies 
have also been presented by Frisch and Mata- 
Pietric [8,9]. 

Thus, it may be observed that for plane-strain and 
axi-symmetric extrusion through curved dies, adequate 
information is available in the literature. Howe~ er, such 
iaformation has not been reported to date for '~ht'ee-di- 
mensional extrusion through mathematically-contoured 

dies. 
In the preseht investigation, an attempt has been 

made to derive upper bounds for the extrusion of 
square sections from square billets using curved dies of 
prescribed profiles. The dies examined are cosine, ellip- 
tic, circular, parabolic and hyperbolic in shape, and 
kinematically-admissible velocity fields for all these 
cases have been obtained using the dual-stream-func- 
tion method proposed by Nagpal and Altan [10]. Up- 
per-bound extrusion loads for these dies are computed 
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for a number of reductions and for different friction 
conditions at the die-metal interface. It is observed that 
although a cosine-shaped die yields the least upper 
bound for frictionless extrusion, the internal work of 
deformation for this die is not necessarily the minimum. 
Further, for high friction conditions, the best results are 
still provided by a straight-tapered die. 

2. Dual stream functions 

For ideal fluid flow in three dimensions, Yih [11] 
suggested the use of two stream functions in place of 
one as in the case of a two-dimensional flow. Each 
stream function represents a class of surfaces called 
stream surfaces. The intersection line of two stream 
surfaces, one taken from each class, is a three-dimen- 
sional stream line. 

Let ~o~ (x, y, z) and ~o 2 (x, y, z) be two continuous 
functions satisfying the boundary conditions on veloc- 
ity. These two functions, therefore, can be treated as a 
pair of dual stream functions. Following Yih [11], the 
velocity components can be derived from these stream 
functions using the equations: 

V~ = (O~'2/Oy ) (~o,/Oz) - (O~o~/c~y) (Oq~,_/~z ) (la) 

V,. = (~q~21Oz) (O@lfc~x) - (O~o~tOz) (O~%tOx) (tb) 

V: = (O~210x) (&o.lOy) -- (O~pdOx) (O~,tc~y) (lc) 

It can be verified easily that the velocity components 
determined in the above-mentioned manner identically 
satisfy the incompressibility condition: 

(OV,.IO,) + (<')V>./Oy) + (OV../O:) = 0 (2) 

Thus, analysis of  the flow field for any three-dimen- 
sional metal deformation problem reduces the determi- 
nation of the corresponding dual stream functions 
satisfying the boundary conditions on velocity. 

To derive the dual stream functions for the present 
problem, the geometry shown in Fig. l(a) may be 
considered. Because of symmetry about two mutually- 
perpendicular axes, only one quadrant of the actual 
geometry needs to be considered, aad this is shown in 
Fig. l(b) along with the prescribed frame of reference. 

Let F(z) be the die-profile function such that the die 
faces in the x - z  and y - z  planes are represented by 
x = F(z) and y -- F(z), respectively. The function F(z) 
must satisfy the conditions that F(z) = W at z = 0 and 
F(z) = A at x = L, where W and A are the semi-widths 
of the billet and product, respectively, and L is the die 
length (Fig. 1). Further let the dual stream functions % 
and ¢Pa be chosen as shown below: 

~ot = x/F(z)  (4a) 

¢P~= W2V~'/F(z)  (4b) 

where Vb is the biilet velocity. It can be verified easily 
that: (i) ¢Px = 0 on the plane x = 0 and qh = - 1 on the 
die surface x = F(z); and (ii) ~P2 = 0 on the plane y = 0 
and ~o2 -- I'V z lib (which is a constant) on the die surface 
y = F ( z ) .  Such constant values ensure that surfaces 
x = 0, x = F(z), y = 0 and y = F(z) are stream surfaces 
and, as such, velocity components normal to these 
surfaces vanish. 

Thus, q~l and ~o 2 defined in the above-mentioned 
manner satisfy all velocity boundary conditions. Hence, 
they are valid stream functions to generate a kinemati- 
cally-admissible velocity field. 

Substituting Eq. (4) into Eq. (1) and simplifying, the 
velocity components in the deformation region are: 

V.,. = W2VbxF'/F 3 (5a) 

V 3 = WaVbyF'/F 3 (Sb) 

V~ -- W 2 Vb/F 2 (5c) 

where F =  F(z) and F ' =  dF/dz. 

3. The upper-bound 

The upper-bound theorem states that amongst all 
kinematically-admissible velocity fields the actual one 
minimises the expression: 

J = (2~o/x/3) f ~ d V  + (ao/x/3) f iA VI, dS  

(mao/,,/~3)j [A VI~ ,, dSr (6) + 

where J is the power dissipation rate, ao is the flow 
stress, e u is the derived strain-rate tensor, IAVi~ is the 
velocity discontinuity at the entry and exit surfaces, 
IAVIsr is the velocity discontinuity at the die-metal  
interfaces St, and m is the friction factor. 

(a) 

(b) 
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% .~ .i' 

Fig. 1. Profile of a curved die with the axes of reference. 
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Fig. 2. Profiles of various curved dies with the axes of reference: (a) concave elliplical die: (b) convex elliptical die; (el concave circular die; (d) 
convex circular die: (c) convex parabolic die; (f) concave parabolic die; (g) convex hyperbolic die: (h) cosine die. and (i) straighl-tapered die. 

The strain-rate components ~:0 are derived fi'om the 
velocity components using the relationship: 

~:~ = ( 1/2)[(? V. /?x  i) + (? Vi/~x~)] (7) 

Substituting Eq. (5) into Eq. (7), the strain-rate compo- 
nents for the proposed flow lield are written as: 

r,., = ( W ~- Vt, F ' ) / F  3 

~y~, = ( W 2 VbF' ) /  F ~ 

~ :  = ( - 2 W21, ' ,F ' )  / F 3 

e, xy = ~,,.~ = 0 

ey: = ~.,. = ( 1/2) W z V b y I ( F " / F  3) - (3(F' )2/F4)]  (8) 

~,. = ~ .  = (1/2) W ~" Vbx[ (F" /  F 3) - (3(  F')2/ F4)] 

where F" = d 2 F / d z  2. Using Eq. (8), J can be evaluated 
from Eq. (6) when the die-profile function, F~ is known. 
For any reduction and friction factor m, J then can be 
minimized vdth respect to appropriate parameters to 
yield the best upper bound. 

4. Die-profile function 

The die geometries examined in the present investiga- 
tion are shown in Fig. 2(a)-2(i), with the corresponding 
die-profile functions listed in Table 1. Referring to this 
Table, it may be seen that: 

(a; the die-profile function F ( : )  is similar in both the 
x- and y-directions: 

(b) with the exception of tile cosine-shaped die, tile 
entry and exit angles are not simultaneously zero Ibr 
the rest of the die shapes, and 

(c) the velocity-discontinuity surfaces are straight in 
;all cases. 

5. Computation 

An integrated Fortran code was developed to com- 
pute the upper-bound extrusion load using Eq. (6). For 
any given die-profile function, F, reduction, R, and 
friction factor, m, the program first calculates the veloc- 
ity components and the strain-rate components using 
Eqs. (5) and (8), respectively, and then evaluates the 
upper-bound on power (Eq. (6)) by numerical integra- 
tion using the 5-point Gauss-Legendre quadrature al- 
gorithm. The value of J obtained in the 
above-mentioned manner is then minimized with re- 
spect to appropriate parameters for any given configu- 
ration. 

For convex elliptic and parabolic dies, there were two 
variable parameters (Table 1), the least upper-bound 
for these two cases was obtained using the Powcll 
optimization algorithm [12]. For all other die shapes, 
the length L of the deformation zone was the only 
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optimizing parameter, the minimization for these cases 
was achieved through straight-forward calculation of J 
by varying L in small discrete steps. All the programs 
were implemented on a Vax-Vms mini-computer, and 
the time taken for each calculation was less than one 
second. 

6. Results and discussion 

The results from the present investigation are sum- 
marized in Figs. 3 a~ld 4 for a smooth die (m = 0) and 
in Figs. 5 and 6 for a rough die (m = 1.0) for a number 
of reductions and for the different die profiles discussed 
in the text. The results reported in Figs. 3 and 4 are for 
an L/W ratio equal to 2.25 since, for the frictionless 
situation, no optimum die length was found to exist for 
any reduction. (The extrusion pressure decreased con- 
tinuously with increase in length L of ~he deformation 
zone.) 

Referring to Fig. 3, it may be seen that the least 
extrusion pressure is obtained for a cosine-shaped die 
having no velocity discontinuity at entry and exit, 
whilst a concave circular die yields the highest pressure. 
The internal work of deformation for any reduction for 
the latter is also found to be the maximum, as may be 
seen in Fig. 4. Further, the convex elliptic, circular and 
parabolic dies provide nearly similar results, with 

1 
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~0 40 ~SO 60 ?0 80 90 
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Fig. 3. Variation of the extrusion pressure with percentage reduction 
for smooth dies (m = 0), 
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Fig. 4. Variation of the internal work of deformation with percentage 
reduction for smooth dies (m = 0). 

slightly improved upper-bounds being obtained for a 
convex hyperbolic die (Fig. 3). The internal work of 
deformation for these dies is also of the same order and 
even lower than the corresponding values for a cosine- 
shaped die (Fig. 4). Thus, the inferior performance of 
this class of convex dies may be attributed to the 
expenditure of redundant work at entry (Table 1). 

It appears, therefore, that it may be possible to 
design improved elliptic and hyperbolic dies having 
both concave and convex sections, to yield still lower 
extr',asion pressure. 

The variation of mean extrusion pressure with reduc- 
tion in the case of the sticking friction condition (m = 
1.0) for the above class of curved dies is shown in Fig. 
5 and the corresponding variation of optimum die 
lengths is presented in Fig. 6. Referring to Fig. 5, it 
may be seen that the lowest upper bounds for this 
situation are provided by straight-tapered and convex 
parabolic dies with progressively increasing results ob- 
tained for cosine, convex hyperbolic, convex elliptic and 
convex circular profiles, in that order. The optimum die 
length for these different die shapes, however, is not 
found to follow any set pattern of variation with reduc- 
tion, as may be seen in Fig. 6. Nevertheless, at low 
reductions the optimum die length for a convex 
parabolic die is found to be minimum, whilst the die 
length is minimum for a convex hyperbolic die at high 
reductions. 
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Table 1 
Die geometries and die-profile functions 

189 

Die shape Die-profile function, F(:), ,v = F(:), y=  F(Z)  Entry angle Exit angle Remark 

Concave elliptic [ W ~ - ( W 2 - A 2)(=/L )-~] ~ s 0 # 0 Fig, 2(a) 

Convex elliptic" fl - h( 1 - ((: - x );a )2).~ ~ 0 0 Fig. 2(b) 

Concave circular ( W2_ _2)o5 0 :/: 0 Fig. 2(c) 
Convex circular b x - ( R 2 - ( :  - L )2)o5 ~ 0 0 Fig. 2(d) 

Convex parabolic ~ W--(W--A)(x/~:- . , /=)/[x/az-y/(L+a:)]  ~ 0  ~ 0  Fig. 2(,') 

Concave parabolic d d+(W-A) (x / ' z - , v /az ) / (V" (L+az) - , ja :  ) ~ 0  -~0 Fig. 2(~ 

Convex hyperbolic (A'-+IW'--A2)(:/L)2) °-5 :/=0 0 Fig. 2(g) 
Cosine ( W +  A )/2 + (( W - d  )/2) cos(~r:/L) 0 0 Fig. 2(h) 
Straight-tapered A +( W -  A ) (L-z) /L  ~ 0 :~ 0 Fig. 2(i) 

"~, fl are the coordinates of the centre of the ellipse: :¢ = L,/J = b + A, a = Lh/[( W -  A )(2h- Hr'+ A )]~''5: a, b are the maior and minor axes of the 
ellipse, respectively. 
~' :¢, fl are the coordinates of the cemre of the circle: R is the radius of the circle; R = f l - A ,  [J = (A ~-- W2--L:) , ,2(A - W). 

az is the distance between the x-axis and the entry plane. 
a az is the distance bet~,een the x-axis and the exit plane. 

It is interesting to note  that  a s t raight- tapered die 
with finite values o f  velocity discontinuity at entry and 
exit is no t  very inefficient in compar ison  to some of  the 
curved dies analysed in the  present study. Under  low 
friction condit ions this  die compares  favourable  with a 
convex elliptic die (Fig. 3), whilst under  high friction 
condi t ions  it yields the  lowest deformat ion  load (Fig. 
5). The  internal work o f  deformat ion  for this die is also 

found to he m i n i m u m  (Fig. 4), as for any given reduc- 
t ion a straight-tapered die offers m i n i m u m  surface area 
for interfacial friction and  encloses the lowest deforma-  
tion volume. A convex parabolic die is also found  to 
yield results very close to those  for a s traight- tapered 
die, as the op t imum die profile for this die is nearly 
straight.  (The distance a -  between the apex o f  the 
parabola  and  the die ent ry  is large (Fig. 2 (g).) 
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Fig. 5. Variation for the extrusion pressure with percentage reduction 
for dies with sticking friction (m = I). 
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Fig. 6. Variation of the non-dimensional lengh with percentage 
reduction for dies with sticking friction (m = 1). 
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It m~¥ be mentioned here that the internal work of S 
deformation for a straight-tapered die as computed Sf 
from the dual-stream-function formulation is found to Vb 
be close to that for homogeneous compression (Fig. 4). V,. V x, V~ 
Thus, for this die, the deformation load calculated 
using Siebei's correction [13] may yield results similar to W 
those obtained from the present analysis. I a vls 

Referring to Figs. 3 and 5 it may be seen that 
concave dies yield higher deformation loads compared IA Vkf 
with the corresponding convex dies. This is because the 
deformation volume for a concave die is greater than 
that  for a convex die for the same reduction. 

7. Conclusions 

Upper-bound loads for the extrusion of square sec- 
tions from square billets have been computed using the 
dual-stream-function method for a number of concave 
and convex dies. It is seen that a cosine die yields the 
lowest extrusion pressure under frictionless conditions 
(m = 0), whilst under sticking-friction conditions (m = 
1.0) a straight-tapered die provides the least pressure. 
The internal work of  deformation is found to be mini- 
mum and nearly equal to that for homogeneous com- 
pression for a straight tapered die for m = 0. It is also 
seen that the upper bounds calculated for concave dies 
are always greater than those for convex dies, due to 
the greater deformation volumes enclosed by these lat- 
ter dies. 

8. List of symbols 

A 
F 
F'  
F" 
J 
L 
m 

P 

half width of the product 
F(z)  die profile function 
F'(z)  first derivative of F 
F ' ( z )  second derivative of F 
upper-bound to power 
die length 
constant friction factor 
average extrusion pressure 

Greek letters 
tx~., eyy, e= 

~xy, ~'yz, l~zx 
GO 
~Pl, tP2 

smface of the velocity discontinuity 
friction surface 
velocity of the billet 
velocity components along the cartesian 
coordinate axes 
half-width of the billet 
magnitude of the velocity discontinuity 
at S 
magnitude of the velocity discontinuity 
at St 

direct strain-rate components 
shear strain-rate components 
uni-axial yield stress in compression 
dual stream functions 
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