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Industrial summary

An upper-bound analysis is proposed for the extrusion of square scctions from square billets through curved dies having
prescribed profiles. Kinematically-admissible velocity fields for the purpose are derived using the dual-stream-function technique.
Analytical resulis are presented for both frictionless and sticking friction conditions; for the latter situation the die geometry has
been optimised with respect to appropriate parameters. It is shown that a cosine-shaped die with zero entry and exit angles yields
the lowest extrusion pressure in the absence of friction. whilst the best upper-bound is provided by a straight tapered die under
sticking-friction conditions. The internal work of deformation, however, is still found to be minimum for a straight die for

frictionless extrusion.
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1. Introduction

A number of analytical studies have been carried out
during the past few yeurs to compute the deformation
loads for the extrusion/drawing of metals through
curved dies. Such studies were initiated due to the use
of these dies rendering the deformation more homoge-
neous with consequent reduciion in the deformation
load. Hence, for metals that are either difficult to form
or where the temperature rise is to be minimized to
protect the metallurgical structure of the deformed
product, these dies can be used with advantage. The
geometry of an ideal streamlined wire-drawing die of
perfect efficiency was first proposed by Richmond and
Devenpeck [1], the proposed die profile being sigmoidal
with zero entry and exit angles, so that no tangential
velocity discontinuities were introduced. Further, using
slip-line-field analysis, it has been shown that for such
dies the load is equal to that for homogeneous com-
pression [2].

Slip-line-field solutions for some other die shapes
have also been presented. Thus, for extrusion through
cosine-shaped die, slip-line-field solutions were obtained

by Samanta [3] and for parabolic-shaped dies by
Bacharach and Samanta [4]. General upper-bound solu-
tions for axi-symmetric extrusion through curved dies
have been obtained by Chen and Ling [5] and Chang
and Choi [6], with the forcgoing analysis being used by
Yang et al. [7] to determine the geometry of streamlined
dies for axi-symmetric extrusion. Experimental results
for extrusion through mathematically-contoured dies
have also been presented by Frisch and Mata-
Pietric [8,9].

Thus, it may be observed that for plane-strain and
axi-symmetric extrusion through curved dies, adequate
information is available in the literature. However, such
information has not been reported to date for shree-di-
mensional extrusion through mathematically-contoured
dies.

In the present investigation, an attempt has been
made to derive upper bounds for the extrusion of
square sections from square billets using curved dies of
prescribed profiles. The dies examined are cosine, ellip-
tic, circular, parabolic and hyperbolic in shape, and
kinematically-admissible velocity fields for all these
cases have been obtained using the dual-stream-func-
tion method proposed by Nagpal and Altan [10]. Up-
per-bound extrusion loads for these dies are computed
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for a number of reductions and for different friction
conditions at the die-metal interface. It is observed that
although a cosine-shaped die yields the least upper
bound for frictionless extrusion, the internal work of
deformation for this die is not necessarily the minimum.
Further, for high friction conditions, the best results are
still provided by a straight-tapered die.

2. Dual stream functions

For ideal fluid flow in three dimensions, Yih [i1]
suggested the use of two stream functions in place of
one as in the case of a two-dimensional flow. Each
stream function represents a class of surfaces called
stream surfaces. The intersection line of two stream
surfaces, one taken from each class, is a three-dimen-
sional stream line.

Let ¢, (x, y, z) and ¢, (x, y, z) be two continuous
functions satisfying the boundary conditions on veloc-
ity. These two functions, therefore, can be treated as a
pair of dual stream functions. Following Yih [11], the
velocity components can be derived from these stream
functions using the equations:

V.= (0¢/0y) (80,/02) — (8p,/0y) (0p,/0z) (la)
V, = (802/02) (8¢9,/0x) ~ (899, /02) (3p2/Ox) (1b)
V. = (3¢,/0x) (0p,/8y) -- (0ep\[0x) (Dp4{Dy) (lc)

It can be verified casily that the velocity components
determined in the above-mentioned manner identically
satisfy the incompressibility condition:

OV [0, ) + (V. [Oy) +(8V.[0z) = 0 04

Thus, analysis of the flow field for any three-dimen-
sional metal deformation problem reduces the determi-
nation of the corresponding dual stream functions
satisfying the boundary conditions on velocity.

To derive the dual stream functions for the present
problem, the geometry shown in Fig. 1(a) may be
considered. Because of symmetry about two mutually-
perpendicular axes, only one quadrant of the actual
geometry needs to be considered, and this is shown in
Fig. 1(b) along with the prescribed frame of reference.

Let F(z) be the die-profile function such that the die
faces in the x—z and y-z planes are represented by
x=F(z) and y = F(z), respectively. The function F(z)
must satisfy the conditions that F(z) = W at z=0 and
F(z)=A at x=L, where W and A4 are the semi-widths
of the billet and product, respectively, and L is the die
length (Fig. 1). Further let the dual stream functions ¢,
and ¢, be chosen as shown below:

o =x/F(2) (4a)
@2= WV, F(z) (4b)

where V,, is the billet velocity. It can be verified easily
that: (i) ¢, =0 on the plane x=0and ¢, = — 1 on the
die surface x = F(z); and (ii) ¢, =0 on the plane y=0
and @, = W2V, (which is a constant) on the die surface
y=F(z). Such constant values ensure that surfaces
x=0, x=F(z), y=0 and y = F(z) are stream surfaces
and, as such, velocity components normal to these
surfaces vanish.

Thus, ¢, and ¢, defined in the above-mentioned
manner satisfy all velocity boundary conditions. Hence,
they are valid stream functions to generate a kinemati-
cally-admissible velocity field.

Substituting Eq. (4) into Eq. (1) and simplifying, the
velocity components in the deformation region are:

V.= WV, xF'|F? (5a)
V, = W2V yF/|F* (5b)
V.= WV, F? (5¢)

where F= F(z) and F' =dF/dz.

3. The upper-bound

The upper-bound theorem siates that amongst all
kinematically-admissible velocity fields the actual one
minimises the expression:

J=(200//3) J V) AV +(50/4/3) f AV ds

+ (may,/ ﬁ)f |AV]dS; )

where J is the power dissipation rate, g, is the flow
stress, g, is the derived strain-rate tensor, |AV], is the
velocity discontinuity at the entry and exit surfaces,
|A¥], is the velocity discontinuity at the die—metal
interfaces Sy, and m is the friction factor.

(a)

(b)
Fig. 1. Profile of a curved die with the axes of reference.
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Fig. 2. Profiles of various curved dies with the axes of reference: (a) concave elliptical die; (b) convex elliptical die; (¢) concave circular die; (d)
convex circular die: (¢) convex parabolic die; (f) concave parabolic die; (g) convex hyperbolic die: (h) cosine die. and (i) straight-tapered die.

The strain-rate components &; are derived from the
velocity components using the relationship:
&= (12AV,jex) + (O Viiex;)] (7
Substituting Eq. (5) into Eq. (7), the strain-rate compo-
nents for the proposed flow field are written as:
e = (W2 FYF?
&y = (W2V, F)/F?
e..=(—2W2V F)F?
gv\‘,\r' = 8,\‘.\' = 0
& =&, = (12)WV pl(F"|F?) — (3(F'V{FY)] (8
= 8. = (1/2) WAV X[(F"| F?) — (3(F'V FY)
where F” = d*F/dz2. Using Eq. (8), J can be evaluated
from Eq. (6) when the die-profile function, F, is known.
For any reduction and friction factor m, J then can be

minimized with respect to appropriate parameters to
yield the best upper bound.

4. Die-profile function

The die geometries examined in the present investiga-
tion are shown in Fig. 2(a)—2(i), with the corresponding
die-profile functions listed in Table 1. Referring to this
Table, it may be seen that:

{u} the die-profile iunction F(c) is similar in both the
x- and y-directions;

{b) with the exception of the cosine-shaped die, the
entry and exit angles are not simultaneously zero for
the rest of the die shapes, and

{c) the velocity-discontinuity surfuces are straight in
all cases.

5. Computation

An integrated Fortran code was developed to com-
pute the upper-bound extrusion load using Eq. (6). For
any given die-profile function, F, reduction, R, and
friction factor, m, the program first calculates the veloc-
ity components and the strain-rate components using
Egs. (5) and (8), respectively, and then evaluates the
upper-bound on power (Eq. (6)) by numerical integra-
tion using the 5-point Gauss—Legendre quadrature al-
gorithm. The value of J obtained in the
above-mentioned manner is then minimized with re-
spect to appropriate parameters for any given configu-
ration.

For convex elliptic and parabolic dies, there were two
variable parameters (Table 1). the least upper-bound
for these iwo cases was obtained using the Powell
optimization algorithm [12]. For all other die shapes.
the length L of the deformation zone was the only
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optimizing parameter, the minimization for these cases
was achieved through straight-forward calculation of J
by varying L in small discrete steps. All the programs
were implemented on a Vax-Vms mini-computer, and
the time taken for each calculation was less than one
second.

6. Results and discussion

The results from the present investigation are sum-
marized in Figs. 3 and 4 for a smooth die (m =0) and
in Figs. 5 and 6 for a rough die (m = 1.0) for a number
of reductions and for the different die profiles discussed
in the text. The results reported in Figs. 3 and 4 are for
an L/W ratio equal to 2.25 since, for the frictionless
situation, no optimum die length was found to exist for
any reduction. (The extrusion pressure decreased con-
tinuously with increase in length L of ihe deformation
zone.)

Referring to Fig. 3, it may be seen that the least
extrusion pressure is obtained for a cosine-shaped die
having no velocity discontinuity at entry and exit,
whilst a concave circular die yields the highest pressure.
The internal work of deformation for any reduction for
the latter is also found to be the maximum, as may be
seen in Fig. 4. Further, the convex elliptic, circular and
parabolic dies provide nearly similar results, with
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Fig. 3. Variation of the extrusion pressure with percentage reduction
for smooth dies (m =0).
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Fig. 4. Variation of the internal work of deformation with percentage
reduction for smooth dies (m = 0).

slightly improved upper-bounds being obtained for a
convex hyperbolic die (Fig. 3). The internal work of
deformation for these dies is also of the same order and
even lower than the corresponding values for a cosine-
shaped die (Fig. 4). Thus, the inferior performance of
this class of convex dies may be attributed to the
expenditure of redundant work at entry (Table 1).

It appears, therefore, that it may be possible to
design improved elliptic and hyperbolic dies having
both concave and convex sections, to yield still lower
extrusion pressure,

The variation of mean extrusion pressure with reduc-
tion in the case of the sticking friction condition (n =
1.0) for the above class of curved dies is shown in Fig.
5 and the corresponding variation of optimum die
lengths is presented in Fig. 6. Referring to Fig. 5, it
may be seen that the lowest upper bounds for this
situation are provided by straight-tapered and convex
parabolic dies with progressively increasing results ob-
tained for cosine, convex hyperbolic, convex elliptic and
convex circular profiles, in that order. The optimum die
length for these different die shapes, however, is not
found to follow any set pattern of variation with reduc-
tion, as may be seen in Fig. 6. Nevertheless, at low
reductions the optimum die length for a convex
parabolic die is found to be minimum, whilst the die
length is minimum for a convex hyperbolic die at high
reductions.
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Table 1
Die geometries and die-profile functions

Die shape Die-profile function, F(z), x = F(z), v= F(Z) Entry angle Exit angle Remark

Concave elliptic [W2— (W2~ A 8P 0 #0 Fig. 2(a)
Convex elliptic B-b(1 —(z—x)ay s #0 0 Fig. 2(b)
Concave circular (W3- 0 #0 Fig. 2(c)
Convex circular® 1—(R2~(z—Ly)** #0 0 Fig. 2(d)
Convex parabolic* W—(W— AN az~ /=Wl a=— L Faz)] #0 #0 Fig. 2(e)
Concave parabolic® A+ (W— AN == ML+ a)— Jaz) #0 #0 Fig. 2(0)
Convex hyperbolic (A2 (W= AN /LS #0 0 Fig. 2(g)
Cosine (W A)2+((W—A4)/2)cos(nz/L) 0 0 Fig. 2(h)
Straight-tapered A+ (W—-AXL~-D)/L #0 #0 Fig. 2(i)

“a, B are the coordinates of the centre of the ellipse: x =L, f=b+ A, a=Lb/[(W—AN2b— W+ A4)]"7: a, b are the major and minor axes of the

ellipse, respectively.

%, f are the coordinates of the centre of the circle: R is the radius of the circle; R=f—A, = (47~ W>—L),2(4— W).

“ac is the distance between the x-axis and the entry plane.
4 a- is the distance between the x-axis and the exit plane.

It is interesting to note that a straight-tapered die
with finite values of velocity discontinuity at entry and
exit is not very inefficient in comparison to some of the
curved dies analysed in the present study. Under low
friction conditions this die compares favourable with a
convex elliptic die (Fig. 3), whilst under high friction
conditions it yields the lowest deformation load (Fig.
5). The internal work of deformation for this die is also
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Fig. 5. Variation for the extrusion pressure with percentage reduction
for dies with sticking friction (m =1).

found to be minimum (Fig. 4), as for any given reduc-
tion a straight-tapered die offers minimum surface area
for interfacial friction and encloses the lowest deforma-
tion volume. A convex parabolic die is also found to
yield results very close to those for a straight-tapered
die, as the optimum die profile for this die is nearly
straight. (The distance az between the apex of the
parabola and the die entry is large (Fig. 2 (g).)
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reduction for dies with sticking friction (m = 1).


anjali
Rectangle


It may be mentioned here that the internal work of
deformation for a straight-tapered die as computed
from the dual-stream-function formulation is found to
be close to that for homogeneous compression (Fig. 4).
Thus, for this die, the deformaiion load calculated
using Siebel’s correction [13] may yield results similar to
those obtained from the present analysis.

Referring to Figs. 3 and 5 it may be seen that
concave dies yield higher deformation loads compared
with the corresponding convex dies. This is because the
deformation volume for a concave die is greater than
that for a convex die for the same reduction.

7. Conclusions

Upper-bound loads for the extrusion of square sec-
tions from square billets have been computed using the
dual-stream-function method for a number of concave
and convex dies. It is seen that a cosine di¢ yields the
lowest extrusion pressure under frictionless conditions
(m = 0), whilst under sticking-friction conditions (m =
1.0) a straight-tapered die provides the least pressure.
The internal work of deformation is found to be mini-
mum and nearly equal to that for homogeneous com-
pression for a straight tapered die for m=0. It is also
seen that the upper bounds calculated for concave dies
are always greater than those for convex dies, due to
the greater deformation volumes enclosed by these lat-
ter dies.

8. List of symbols

A half width of the product

F F(z) die profile function

F F'(z) first derivative of F
F" F"(z) second derivative of F
J upper-bound to power

L die length

m constant friction factor

P average extrusion pressure

S swface of the velocity discontinuity

S¢ friction surface

Vs velocity of the billet

Vo V., V. velocity components along the cartesian
coordinate axes

w half-width of the billet

AV, magnitude of the velocity discontinuity
at §

|AV ] magnitude of the velocity discontinuity
at S¢

Greek letters

direct strain-rate components

&cy» &z &,  Shear strain-rate components

O uni-axial yield stress in compression
@15 O dual stream functions

Exxs Eyys €22
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