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Abstract 

Single edge notch(SEN) aluminium specimens of widths (D): 20, 40 and 50mm are tested under uniaxial tensile loading for a 

strain rate of 0.005/minute. The notch depth to width ratio (a/D=0.25) and the gauge length to width ratio (L/D=2.5) are constant 

for these tested specimens. The load versus deflection curves are analyzed using cohesive crack model. The peak stress data are 

analyzed using equivalent elastic crack model. The fracture energy Gf obtained from these approaches are compared.    

Uniaxial tensile testing of 50mm width SEN specimens(L/D=2.5) with ligament lengths of 2.5, 5, 7.5, 10, 12.5 and 15mm is 

carried out. A linear regression fit between work of fracture per unit ligament area and ligament length is used to determine the 

essential work of fracture. An energy based approach involving fixed point iteration method to calculate the crack length at peak 

load is proposed. 
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1. Introduction 

The main objective of the research described in this article is to examine the fracture behavior of aluminium sheets 

under plane stress conditions from different theoretical perspectives. Mode-I tensile testing of thin aluminium sheets 

is carried out. The experimental data is analyzed using equivalent elastic crack model and cohesive zone model. The 

mode-I plane stress fracture toughness K1c determined using these two approaches is compared.  

 

Fig. 1: Test Geometry 

 

1.1. Test geometry 

Test specimens made of pure aluminium are prepared. The typical geometry of the test specimens is shown in 

figure 1. The dimensions of the test specimens are listed in table 1.  

 

 

  



 

Table 1. Geometry of test specimens. 

Depth, 

 D (mm) 

Length,  

L (mm) 

Notch Depth, 

 a (mm) 

Number  

of Samples 

20 50 0 3 

40 100 0 3 

50 125 0 3 

20 50 5 3 

40 100 10 3 

50 125 12.5 3 

 

All specimens are tested at a strain rate of 0.25 mm/minute. The peak stress values are calculated. The load P versus 

deflection u curves are determined for all the specimens.  

1.2. Peak Stress and Work of Fracture Data 

The load deflection curves indicates the ductile behavior of thin aluminium sheets. The peak stress values and work 

of fracture values are listed in table 2.  

Table 2. Peak stress values of test specimensS 

Depth, 

 D (mm) 

Notch Depth,  

a (mm) 

Peak Stress 

(N/mm2) 

WOF 

(N.m/m2) 

20 5 99.81, 91.80, 90.64 128.8, 111.9, 119.5 

40 10 90.54, 89.78, 90.38 144.6, 170.5, 152.5 

50 12.5 90.02, 93.77, 92.05 232.5, 285.5, 269.5 

 

2. Equivalent Elastic Crack Model 

2.1. Linear regression Analysis 

The pictorial representation of equivalent elastic crack model is shown in figure 2. The fracture process zone at the 

crack tip is almost entirely occupied by the plastic zone. To apply linear elastic fracture mechanics concepts, plastic 

zone is lumped into a line of length ∆ac. As size  𝐷 → ∞, 𝛥𝑎𝑐 → 𝐶𝑓 .The fracture toughness is given by the equation:  
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Using Taylor’s series expansion, three equations can be obtained as show in figure 2. The fracture toughness K1c and 

Cf  for the three linear regression equations are given in table 3 and in figure 3. The K1c value predicted by linear 

regression 3 equation differs by 50% as compared with linear regression equations 1 and 2. To predict the correct 

value, a crack growth resistance curve approach is examined. 
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Figure 2: Equivalent Elastic Crack Model 

 

 

(a) (b) (c) 

Figure 3: Linear regression analysis 

 

Table 3. Fracture Parameters obtained from equivalent elastic crack model. 

Linear 

Regression 

Equation 

K1c Cf Gf 

1 2443 114.9 148.9 

2 2108 83.7 110.9 

3 1064 11.0 28.3 

2.2. Crack growth resistance curve 

The crack growth resistance curve i.e. R-curve is obtained from the experimental data. The strain energy term 

Gu(σNu
(i),D(i),∆a(i)), is given by the equation 𝐺𝑢 =

(𝜎𝑁𝑢
(𝑖)

)
2

 𝐷(𝑖)

Ei
  𝑘0

2(𝛼0 +
∆𝑎(𝑖)

𝐷(𝑖) ), i=1,2,3 is for three different sizes D(i)= 

20, 40, 50, σNu
(i) is average of the peak stress value and Ei is the average Youngs Modulus for size Di specimens. 

The R-curve given by R(∆a) satisfies two conditions: 1. 𝑅(∆𝑎𝑐
𝑖 ) = 𝐺𝑢(𝜎𝑁𝑢

𝑖 , 𝐷𝑖 , ∆𝑎𝑐
𝑖 ), 2. 

𝜕𝑅

𝜕∆𝑎
=

𝜕𝐺𝑢

𝜕∆𝑎
 

The function form of R-curve is assumed as 𝑅 = 𝛽𝑝𝑒𝑎𝑘(1 − exp(−𝛾∆𝑎)) . The parameters βpeak and γ are 

determined numerically using Levenberg-Marquardt algorithm. The details of the algorithm are given in 

reference[1]. Figure 4 shows the R-curve and table 4 shows the results of the R-curve. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Fracture Parameters obtained from R-curve approach 

Size ∆ac R(∆ac) K1c 

20 5.32 15.78 785 

40 6.92 20.17 902 

50 12.29 33.69 1170 
 

Figure 4: Crack growth resistance curve  

 

 

3. Cohesive Zone model 

3.1. Finite element simulation of load versus deflection curve using cohesive zone model 

In elastic plastic fracture mechanics, the plastic zone at the crack tip can be assumed to have uniform yield stress 

σY. This model was proposed by Dugdale. Barenblatt[2] proposed a model where the stress in the plastic zone is non-

uniform and varies with the crack opening. This model inspired the used of cohesive zone modelling to model the 

stresses in the plastic zone developed at the crack tip. A traction separation curve relates the crack opening w with the 

cohesive stress σ(w). Depending on the material, different traction separation laws have be proposed. For quasi-brittle 

materials like concrete, linear, bi-linear and exponential traction separation laws are proposed in literature[3]. In this 

study, we propose a traction separation law as indicated in figure. The four parameters are ft
0, ft

1, w0, w1 with ft
1=ft

0.  

The geometry of the finite element model is shown in the figure. A 4-node quadrilateral element of mesh size 1x1 

unit is used. The initial youngs modulus Einitial is calculated for each sample from its load deflection curve and this 

value is used as elastic modulus EFEM in the finite element model simulating the load versus deflection curve of the 

specific sample.  

The nodes in the ligament region are freed one node at a time. The freed nodes follow traction-separation law.  The 

corresponding displacement u0 and the axial force P0 is calculated using Petersson’s influence function method. After 

all the nodes are freed, the displacement are increased gradually until the specimen fails completely. The experimental 

load versus deflection curves are fit using the parameters of this model ft
0 =ft

1=121, w0= 2*0.7, w1= 2*0.154: as show 

in figure. The fracture energy Gf is determined as Gf = 0.5 ft
0w1+ 0.5 ft

1 w0=103.3 Nm/m2. The value of  ft
0w1=37.27 

Nm/m2. 
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Figure 5 a) Elastic-Plastic fracture mechanics: Dugdale model  b) Cohesive zone Model: Traction Separation Law 



a) b) D=20 c) D=40 d)D=50 

 

Figure 6 a) Geometry of Finite Element Model,  b), c), d) : Load-deflection curves experimental vs simulation  

 

4. Essential work of fracture 

4.1. Description of experiments 

The total area under load deflection curve gives the energy required to break the specimen into two pieces. It is 

also known as work of fracture (WOF). This area divided by the ligament area gives fracture energy GF. A part of the 

energy is used to create new crack surface (essential work of fracture) and another part is dissipated as plastic 

deformation work in the plastic zone at the crack tip. To determine this essential work of fracture, we test specimens 

of geometries with constant depth D= 50 mm and varying ligament lengths (D-a): 2.5 mm, 5.0 mm, 7.5 mm, 10 mm, 

12.5 mm and 15 mm. Three samples are tested for each geometry resulting in a total of 18 test specimens. The load P 

versus deflection u curves are obtained. The peak stress data are calculated.  

4.2. Determining essential work of fracture 

A known linear relationship between work of fracture per unit ligament area and ligament length exists in 

literature([4],[5], [6]) given as   
𝑊𝑂𝐹

(𝐷−𝑎)𝑡
= 𝑤𝑒 + 𝛽𝑤𝑝(𝐷 − 𝑎). we is essential work of fracture and βwp gives the 

plastic work done. From the 18 WOF values, a linear regression fit gives the values of we =115.8 N.m/m2 and βwp = 

5.76 N.m/m2 as shown in figure 7(b) .  
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(b) 

 
Figure 7 (a) : Test geometries (b) Linear fit to determine essential work of fracture 

 

4.3. Fixed point iteration algorithm to calculate crack length at peak load 

An algorithm to calculate the crack length at peak load is proposed in figure 8. The results of this approach are given 

in table 5.  

---Experiment 

---Simulation 
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(b) 
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(d) 

 
Figure 8 : Fixed point iteration algorithm to determine the crack length at peak load 

 

 

Table 5. Fracture Parameters obtained from fixed point iteration 

algorithm 

Size Sample ∆ac E K1c Gf 

20 1 3.63 37276 717.2 13.8 

20 2 2.99 34709 620.9 11.11 

20 3 2.38 36277 577.7 9.201 

40 1 4.71 43427 814.3 15.27 

40 2 6.29 46773 871.8 16.25 

40 3 6.34 48111 879.7 16.09 

50 1 8.02 46760 983.4 20.68 

50 2 9.00 48132 1062 23.44 

50 3 7.96 40839 1003 24.64 

 

 

 
Figure 9: R-curve obtained from fixed point algorithm 

A crack growth resistance curve can be obtained from the values of Gf  and ∆ac calculated in table 5 and shown in 

figure 9a. The value of the parameters of R-curve βfit=31.4 Nm/m2 and Cf=21.1 mm. This value is comparable with 

the area under the initial part of the curve (37.3 N.m/m2) in traction separation law shown in figure 5b. 



5. Discussion  

The fracture of aluminium sheets has been investigated using different theoretical approaches. Using the equivalent 

elastic crack model, the linear regression equations 1 and 2 gave Gf and Cf values which are 3-5 times higher than  

those obtained by linear regression 3. The cohesive zone model was able to capture the load versus deflection for 

size D=20, 40 samples. For D=50 samples, the post peak slope of the experiment was milder compared to the 

simulation. The fixed point iteration algorithm gives Gf value which agrees with the linear regression 3 of equivalent 

elastic crack model. The Gf calculated from the work of fracture and from equivalent elastic crack model(Linear 

Regression 1 and 2) are larger than the Gf obtained from essential work of fracture approach considering fracture 

behavior upto peak loads.  

5.1. Modifying the Youngs modulus used in the Gf  calculation. 

In fixed point iteration algorithm, at peak load, we calculate  𝐾𝐼 = 𝜎𝑁𝑈√𝐷𝑘(𝛼0 +
∆𝑎𝑐

𝐷
). The material is at the peak 

state of loading and its stiffness is reduced considerably. As a result, the Youngs modulus E at peak load is no longer 

same as the initial Youngs modulus Einitial. The expression for fracture energy 𝐺𝑓 =
𝐾𝐼

2

𝐸
 uses the initial Youngs 

modulus Einitial. This results in Gf which is significantly lower than the GF obtained from work of fracture approach.  

 

Using a Youngs modulus E smaller than the Einitial will result in higher Gf values in the fixed point iteration 

algorithm. Then the results of Gf can match the GF  values obtained from work of fracture approach. This idea will 

have to supported by a mathematical framework in future.  
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