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Abstract

This paper presents a new approach for distance protection of transmission lines using time-frequency analysis. The proposed tech-
nique consists of preprocessing the fault current signal samples using hyperbolic S-transform to yield the change in energy and standard
deviation at the appropriate window variation. From these two features, a decision of fault or no-fault on any phase or multiple phases
of the transmission line can be made. The ground detection is done by a proposed indicator with a threshold value. The fault distance
from the relaying point can be accurately estimated using cubic polynomial interpolation technique, Feed forward Neural Network and

Adaptive Network Fuzzy Inference System (ANFIS).

Keywords: ANFIS; Change energy; Cubic interpolation; Distance protection; HS-transform; Neural network; Standard deviation

1. Introduction

Transmission line protection is a very important issue to
safeguard the electric power system. The faults on trans-
mission lines need to be detected, classified, located accu-
rately, and cleared as fast as possible. In power
transmission line protection, faulty phase identification
and location of fault from the relaying point are the two
most important issues, need to be addressed. Distance
relaying techniques based on the measurement of the
impedance at the fundamental frequency between the fault
location and the relaying point have attracted wide spread
attention. The sampled voltage and current data at the
relying point are used to locate and classify the fault
involving the line with different fault resistance present in
the fault path.

The accuracy of the fault classification and location also
depends on the amplitude of the DC offset and harmonics
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in comparison to the fundamental component. Fourier
Transforms, Differential equations, Waveform modeling
and Kalman filters are some of the techniques used for
fault detection and location calculation. Another pattern
recognition technique based on wavelet transform [1] has
been found to be an effective tool in monitoring and ana-
lyzing power system disturbances including power quality
assessment and system protection against faults. Although
wavelets provide a variable window for low and high fre-
quency currents in the current waveforms during fault, they
are subject to inaccuracies due to noise and the presence of
harmonics.

Here in this paper, a new approach for fault classifica-
tion and location using multi resolution S-transform with
windows of varying shape [4]is proposed. The S-transform
[2-7] is an invertible time-frequency spectral localization
technique that combines elements of wavelet transforms
and short-time Fourier transform. The S-transform uses
an analysis window whose width is decreasing with fre-
quency providing a frequency dependent resolution. S-
transform is continuous wavelet transform with a phase
correction. It produces a constant relative bandwidth
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analysis like wavelets while it maintains a direct link with
Fourier spectrum. The S-transform has an advantage in
that it provides multi resolution analysis while retaining
the absolute phase of each frequency. This has led to its
application for detection and interpretation of events in a
time series like the power quality disturbances [6].

A variant of the original S-transform is used where a
pseudo-gaussian hyperbolic window is used to provide bet-
ter time and frequency resolutions at low and high frequen-
cies instead of the S-transform using the Gaussian window
for fault classification and location in transmission lines.
Here the hyperbolic window has frequency dependence in
its shape in addition to its width and height. The increased
asymmetry of the window at low frequencies leads to an
increase in the width in the frequency domain, with conse-
quent interference between major noise frequencies. In this
paper the hyperbolic S-transform (HS-transform) is used to
calculate the change in energy and standard deviation of
the fault current signal to identify the fault classes and
hence obtain the fault distance from the relaying point.
The voltage signal samples are not taken in this approach
as it gives the same feature as current signal, which only
increases computational burden.

The simulation is done using PS Blockset of Simulink
(MATLAB). The transmission line model is developed to
generate fault data with different system operating condi-
tions. The interpolation algorithm, Feed Forward Neural
Network and ANFIS are used to compute the fault dis-
tance from the relaying point, with error less than 0.5-1%
in most cases.

2. HS-transform for fault pattern recognition

The S-transform is an extension to the Gabor Trans-
form and wavelet transform, and is based on a moving
and scalable localizing Gaussian window. The interesting
phenomena in the S-transform is that it is fully convertible
both forward and inverse from time domain to frequency
domain. This properties is due to the fact that the modulat-
ing sinusoids are fixed with respect to the time axis while
the localizing scalable Gaussian window dilates and trans-
lates. The S-transform falls within the broad range of
multi-resolution spectral analysis, where the standard devi-
ation is an inverse function of the frequency, thus reducing
the dimension of the transform.

The localizing Gaussian window function g(7) is defined
as

) = —exp (1)
oV2n

where ¢ is the standard deviation. The multiresolution S-

transform can be defined as

S(f,7,0) = [ OC h(D)g(x — 1, o)exp=22nds 2)

The primary purpose of the dilation parameter is to in-
crease the width of the window function g(z,0) for lower

frequency and vice versa, and is controlled by selecting a
specific functional dependency of ¢ with the frequency.
The width of the window is chosen to be proportional to
the period of the cosinusoid being localized.

1
o) =T =1
f1
where 7 is the time period.
Now the S-transform [4] may be written as

St f) = [ h h(t){% exp{—/2(t — 1)/2) exp(—2nft)}dt,
(4)

where S denotes the S-transform of /(¢), which is the actual
fault current or voltage signal varying with time, frequency
is denoted by f, and the quantity 7 is a parameter which
controls the position of gaussian window on the time-axis.

Here a small modification of the gaussian window has
been suggested for better performance.
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and the S-transform with this window is given by

(3)
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S(t, f s ) = / WOt — 1, f,ay) - exp(—2mift)ds,  (6)
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where oy is to be chosen for providing suitable time and
frequency resolution.

In applications, which require simultaneous identifica-
tion time-frequency signatures of different faulted phase
currents and voltages, it may be advantageous to use a win-
dow having frequency dependent asymmetry. Thus, at high
frequencies where the window is narrowed and time resolu-
tion is good, a more symmetrical window needs to be cho-
sen. On the other hand, at low frequencies where a window
is wider and frequency resolution is less critical, a more
asymmetrical window may be used to prevent the event
from appearing too far ahead on the S-transform. Thus
an hyperbolic window of the form given below is used.

21 _£2y2
Wy = /] .exp{ sz } (7)
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Where
Ot By Oy = By
X= ZOChyﬁhy (T ! é) + 20(hyﬁhy
x /(-1 =&+ 2, (8)

In the above expression 0(oy(fny and ¢ is defined as

é . (Bhy - (th)zﬂ“iy (9)
4ahyﬁhy

The translation by ¢ ensures that the peak W, occurs at

T—1t=0.



At f=0,W}, is very asymmetrical, but when f'increases,
the shape of Wy, converges towards that of W, the sym-
metrical gaussian window given in Eq. (4) for different val-
ues of o,y and By and with ilzly = 1. The discrete version of
the Hyperbolic S-transform of the faulted current signal
samples at the relaying point 1is calculated as
Sin, j] = SN H[m + n)] - G(m, n) exp(i2nmj) where N is

m=0
the total number of samples and the indices n, m, j are
n=01...N—-1m=01....N—1, and

j=0,1...N—1. The G(m,n) denotes the Fourier trans-
form of the Hyperbolic window and is given by

G(m,n) = 2/ ) exp (_szz) (10)

2
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and H(m,n) is the frequency shifted discrete Fourier trans-
form H [m], where

1 N-1

H(m) = = > h(k) exp(~i2nnk) (12)
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3. System studied

The 400 kV, 3-phase, 100 km power transmission line is
shown in Fig. 1. A cycle-to-cycle comparison of currents
and thresholds are used to detect any abnormality due to
the occurrence of a fault. Once a deviation is observed,
the HS-transform is applied to the data one cycle back
and the one cycle data from the point of occurrence of
the deviation in the current amplitudes. The parameters
of the transmission line chosen as R =0.2568 Q/km,
L =2.0mH/km, C=0.0086 uF/km. The Fig. 2 shows the
current signal at LLL-G fault. The sampling rate for the
simulation is 6.4 kHz.

Here, the fault pattern recognition is done by HS-trans-
form for L-G, LL-G, and L-L, LLL-G faults with fault
resistance ranging from 0 Q to 200 Q at various location
and inception angles. The standard deviation and change
in energy are the two indices found out for faulty phase
detection and location determination.
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Fig. 1. Transmission line model.
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Fig. 2. Fault current at LLL-G fault.

4. Faulty phase identification

The feature extracted from the faulted current signal
using HS-transform for different types of faults at 5-95%
of the line are used to classify the type of fault. Change in
the signal energy is obtained as ce=FE —E,=
{abs(hsf-}2 — {abs(hs,}* and the standard deviation of the
HS-transform contour is obtained as sd = std {abs(hsy)}.

Various types of faults are simulated on the system
shown in Fig. 1 with varying inception angle, distance
and fault resistance R; in the fault path to ground. Figs.
3a-3n shows the time frequency contours of the HS-trans-
form output for a—g (a-phase and ground), a—b (between a-
and b-phase), a-b—g (a and b to ground) and a-b-c-g (a-,
b-, c-phase to ground) faults. From these figures, it is seen
that the faulted phase exhibits the distinct contours and the
time at which it occurs. The phase, which is not faulted,
exhibits no such contours, thus clearly classifying the type
of fault visually. For recognizing the fault pattern, the
change in energy of the signal (ce) and standard deviation
(sd) are used and the detailed results for different types of
fault inception angles, distance and fault resistance.

Tables 1-6 show the change energy (ce) and standard
deviation (sd) for all the three phases in faulted condition.
It is clearly seen that, in case of L-G(a—g) fault at 10% of
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Fig. 3a. a-ph at LL fault at 10% of line, Ry 20 Q.
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Fig. 3b. b—ph at LL fault at 10% of line, Ry 20 Q.
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Fig. 3d. a-ph at LLL fault at 30% of line, Ry 100 Q.

line, 20 Q fault resistance and 30° inception angle, the ce
and sd value for a-phase are 49.6137 and 0.6269 respec-
tively, while for phase b , ce and sd are 3.3263 and
0.0698 and for c-phase ce and sd are 1.0416 and 0.0481
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Fig. 3g. a-ph at L-G fault at 50% of line, Ry 150 Q.

respectively. The value of ce and sd in a-phase clearly
shows that there is fault in a-phase. Likewise in case of
LL-G (ab—g) fault, ce and sd for a-phase are 49.7764 and
0.6724 respectively. For b-phase ce and sd are 18.90 and
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Fig. 3h. b-ph at L-G fault at 50% of line, Ry 150 Q.
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Fig. 3i. c—ph at L-G fault at 50% of line, Ry 150 Q.

a-ph at LL-G Faut

2 T T T T T

0
o
g 2
g4
=

£

5 L L | L . L

0 20 40 60 80 100 120
samples

15 T T T T T T T T T
o
2
pe
o
2
®
£
g

L 1 1 1 i ——T1—]
10 20 30 40 50 60 70 80 90 100
samples

Fig. 3j. a-ph at LL-G fault at 70% of line, Ry 200 Q.

0.29, respectively and for c-phase ce and sd are 2.01 and
0.06 respectively. The above result clearly shows that the
phase involving fault is having very high value of ce and
sd compared to un-faulted phase. Table 4 provides ce
andsd for fault at 50% location, 200 Q fault resistance
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Fig. 3k. c—ph at LL-G fault at 70% of line, Ry 200 Q.
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Fig. 31. a-ph at LLL-G fault at 90% of line, Ry 200 Q.
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Fig. 3m. b—ph at LLL-G fault at 90% of line, R 200 Q.

and 90° inception angles. In case of L-L (ab) fault, ce
and sd values for a-phase are 8.8929 and 0.1422, respec-
tively and for b-phase, ce and sd are 7.7138 and 0.1231
while for c-phase ce and sd are 0.0000 and 0.0350 respec-
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Fig. 3n. c—ph at LLL-G fault at 90% of line, R 200 Q.

tively. For above location and fault resistance, for LLL—
G(abc-g), ce and sd values for a-phase are 12.7833 and
0.1799, ce and sd values for b-phase are 8.132 and 0.1327
and ce and sd values for c-phase are 11.5229 and 0.1965
respectively, which indicates that all three phases are in
faulted condition. The ce and sd values for different phases
at different fault resistance, fault inception angle, fault
location and for different types of fault have been shown
in Tables 1-6. From the above analysis fault classification
can easily done to detect the faulty phase. A general rule
can be formulated for change in energy (ce) > 5.0 and stan-
dard deviation (sd)> 0.1 for the phase involving fault
otherwise the phase is un-faulted.

5. Ground detection

Ground detection is done by a simple approach by
defining an indicator.

Indicator = min(ce,, cep, ce.)

Incase of L-L (ab) fault at 10% of line with fault resistance of
20 Q and 30° inception angle, the indicator is 0.0001. But the
indicatoris 1.0416 in case of L-G(a—g) fault, 2.0117 in case of
LL-G(ab-g), and 16.2684 in case of LLL-G(abc-g) fault
respectively. When the threshold value for indicator is more
than 0.005, the fault involves ground, otherwise fault does
not involve ground. This is verified for every kind of fault
at different location, fault resistance and inception angles.

6. Fault location

Once the fault is classified, the next item is to determine
the exact distance of the fault from the relaying point. For
this purpose it is proposed to compute the ce and sd values
for faults at different locations with varying inception
angles, pre-fault load current values, and different fault
resistances Ry in the fault path.

Here we propose three methods for fault location calcu-
lation and a comparative study has been made to get the
accuracy of fault location.

Here the error is calculated as

|actual distance — calculated distance|
protected line length

% 100 (13)

% error =

6.1. Method 1: Cubic Interpolation

In the first approach, polynomial curve fitting (cubic)
has been applied. Here a relationship between fault dis-
tance d and ce can be expressed as

d = ag + ai(ce) + as(ce)” + as(ce)’ (14)

In a similar way another relationship between  and sd is
obtained as

d = ag+ ai(sd) + ax(sd)” + a3 (sd)’ (15)

Here the polynomial of third order has been selected to fit
the data covering the total distance and a wide range of
fault resistance Ry and inception angle o. Table 7 gives
the actual distance calculation using the cubic interpolation
technique. The maximum error is 0.06% in case of LL-G
fault at 40% of transmission line.

6.2. Method 2: Feed Forward Neural Network

In the second approach a feed forward neural network
with an input layer, two hidden layers, and an output layer
is trained using back-propagation algorithm. The first hid-
den layer has five neurons and uses the tan-sigmoid func-
tion as the transfer function and the second hidden layer
uses a pure linear sigmoid function for its activation. The
output layer has got one neuron and uses log-sigmoid acti-
vation function and provides the fault location as output.
In the back propagation training algorithm, the error mea-
sure E is given as

0
E=Y (d—x) (16)
J=
where Q is the number of training samples. The weights are
updated as

Aw(k + 1) = —yALE + aAw(k) (17)

where A, E is the gradient with respect to w, and o is the
momentum constant and # is the learning rate. The gradi-
ent descent algorithm is implemented in patch mode and an
adaptive learning rate is used to keep the step size as large
as possible without oscillations. Both sd and ce values are
generated for 500 test cases (for different line sections, fault
resistance Ry and inception angle o) for training. Once the
net is trained, any new value of sd and ce will yield the fault
distance. From the results presented in Table 7, it is seen
that the maximum error in the evaluation of fault distance



Table 1
Faulty phase identification

Ry =20 Q, Fault at 10%, Inception angle 30°

Fault a b c
ce, sd, ce, sdy ce. sd,.
LG ag 49.6137 0.6269 3.3263 0.0698 1.0416 0.0481
bg 1.7655 0.0859 24.9729 0.3148 3.1497 0.0920
cg 2.1833 0.0592 1.0604 0.0538 34.9404 0.5415
LLG abg 49.7764 0.6724 18.9028 0.2907 2.0117 0.0610
beg 3.3505 0.0703 36.7778 0.4392 43.9432 0.6116
cag 42.5899 0.5139 24216 0.0841 24.9239 0.4324
LL ab 24.2053 0.3070 22.2882 0.2856 0.0001 0.0350
be 0.0001 0.0350 11.5396 0.2076 10.1772 0.2003
ca 26.7541 0.3909 0.0001 0.0350 28.0509 0.4028
LLLG abcg 33.7419 0.4424 16.2684 0.2178 23.1498 0.3767
Table 2
Faulty phase identification
Ry =200 Q, fault at 30%, Inception angle 45°
Fault a b c
ce, sd, cey, sd, ce. sd,.
LG ag 15.8385 0.2117 0.2464 0.0396 0.0230 0.0378
bg 0.9986 0.0647 11.2101 0.1739 1.1876 0.0647
cg 0.4431 0.0475 0.2272 0.0442 14.9927 0.2370
LLG abg 16.4559 0.2231 8. 9539 0.1491 0.1174 0.0415
beg 0.2905 0.0323 11.7237 0.1727 12.5895 0.1969
cag 13.4441 0.1825 0.4681 0.0559 15.3726 0.2517
LL ab 9.9518 0.1473 8.1618 0.1281 0.0000 0.0350
be 0.0000 0.0350 8.2121 0.1577 7.1622 0.1526
ca 13.1622 0.1526 0.0001 0.0350 12.3702 0.1854
LLLG abcg 13.4585 0.1874 8.5023 0.1370 12.1127 0.2046
Table 3
Faulty phase identification
Ry =0Q, fault at 30%, inception angle 60°
Fault a b c
ce, sd, cep sd, ce. sd,.
LG ag 53.6753 0.6884 2.0811 0.0572 0.4064 0.0410
bg 2.3987 0.0757 26.8833 0.3412 3.2008 0.0800
cg 1.6748 0.0562 0.9305 0.0504 35.25 0.5514
LLG abg 52.8872 0.7219 18.8112 0.2796 1.1625 0.0489
beg 1.7182 0.0512 41.0512 0.4916 48.2312 0.6806
cag 48.2917 0.5965 2.2728 0.0718 22.5077 0.3926
LL ab 26.6698 0.3360 24.7842 0.3158 0.0001 0.0350
bc 0.0001 0.0350 11.2606 0.1976 9.8353 0.1896
ca 28.7006 0.4210 0.0001 0.0350 29.9979 0.4328
LLLG abcg 36.7997 0.4865 17.7464 0.2351 23.9085 0.3904

occurs for an LL-G fault at 100 km from the relaying point
and its magnitude is 1.38%.

6.3. Method 3: Adaptive Network Fuzzy Inference System
(ANFIS)

In the third method, an adaptive network fuzzy infer-
ence system is trained for 500 test sets of ce and sd for var-
ious locations of faults, fault resistance and fault inception

angles. The ANFIS structure has two inputs ce and sd and
each of these contains 5 membership functions and the
total number of rules in the fuzzy rule base is 25. Further,
the membership function chosen here is a bell shaped one
and has the form:

Iy, (x) = T \h (18)



Table 4
Faulty phase identification

Ry =200 Q, fault at 50%, inception angle 90°

Fault a b c
ce, sd, cep sd, ce. sd,.
LG ag 14.2844 0.1947 0.0551 0.0365 0.3697 0.0419
bg 1.1669 0.0667 10.4977 0.1615 0.9766 0.0645
cg 0.3176 0.0443 0.4479 0.0453 13.5935 0.2180
LLG abg 15.0194 0.2062 8.2011 0.1365 0.116 0.0421
beg 0.116 0.0421 10.773 0.1639 11.2391 0.1818
cag 12.3907 0.1708 0.5111 0.0583 14.4228 0.2366
LL ab 8.8929 0.1422 7.7138 0.1231 0.0000 0.0350
be 0.0000 0.0350 7.862 0.1522 6.816 0.1471
ca 10.5525 0.1664 0.0000 0.0350 11.7686 0.1781
LLLG abcg 12.7833 0.1799 8.132 0.1327 11.5329 0.1965
Table 5
Faulty phase identification
Ry =200 Q, fault at 10%, inception angle 45°
Fault a b c
ce, sd, cey sd, ce. sd,.
LG ag 17.4713 0.2295 0.6927 0.0451 0.2538 0.0350
bg 0.8430 0.0648 12.5204 0.1861 1.4074 0.0681
cg 0.6854 0.0463 0.1306 0.0437 16.4686 0.2574
LLG abg 18.0017 0.2406 9.7721 0.1632 0.1512 0.0405
beg 0.2849 0.0335 12.8119 0.1819 14.0022 0.2124
cag 14.5258 0.1944 0.5134 0.0594 16.4302 0.2684
LL ab 10.4262 0.1525 8.6269 0.1332 0.0001 0.0350
be 0.0001 0.0350 8.5845 0.1634 7.5322 0.1584
ca 11.769 0.1811 0.0001 0.0350 12.992 0.1929
LLLG abcg 14.1534 0.1952 8.8947 0.1413 12.719 0.2129
Table 6
Faulty phase identification
R=200 Q, fault at 100%, inception angle 30°
Fault a b c
ce, sd, cey sd, ce. sd,.
LG ag 13.0008 0.1752 0.5925 0.0717 2.9957 0.0891
bg 2.4032 0.0725 12.1988 0.1611 0.4849 0.0587
cg 0.2494 0.0351 2.1859 0.0581 15.0271 0.2869
LLG abg 14.7122 0.1912 9.0009 0.1296 1.7841 0.0532
beg 1.9142 0.0760 14.3503 0.1830 12.5379 0.1727
cag 10.3315 0.1448 1.5882 0.0628 17.0525 0.2311
LL ab 10.3064 0.1464 7.8023 0.1178 0.0003 0.0350
be 0.0002 0.0350 12.0526 0.1645 10.4153 0.1539
ca 10.7793 0.1575 0.0002 0.0350 13.1282 0.1774
LLLG abcg 12.4227 0.1658 11.4536 0.1561 14.7028 0.2014
where the parameters a;,b;, and ¢; are the parameters in the and the learning rate # is expressed as
Ist layer and are updated with a generic formula as k
. - (20)
Ao =—n— > (l
O o



Table 7
(Fault location determination)

Fault Actual distance Calculated distance % error Calculated distance % error Calculated % error
(cubic interpolation) (feed forward neural network) distance (ANFIS)

LG 20 20.0139 +0.0139 19.9984 —0.0016 19.9995 —0.0005
40 39.9487 —0.0513 40.0066 +0.0066 40.0011 +0.0011

60 59.9654 —0.0346 59.9872 —0.0128 59.9989 —0.0011

80 79.9866 —0.0134 80.0120 +0.0120 80.0012 +0.0012

100 100.0199 +0.0199 99.9957 —0.0043 99.9993 —0.0007

LLG 20 20.0092 +0.009 18.7054 —1.2946 20.0017 +0.0017
40 39.9395 —0.0605 40.7390 +0.7390 39.9976 —0.0024

60 59.9807 —0.0193 61.3410 +1.3410 60.0010 +0.0010

80 80.0102 +0.010 80.5931 +0.5931 79.9992 —0.0008

100 99.9672 —0.0328 98.6215 —1.3785 100.0005 +0.0005

LL 20 19.9846 —0.015 19.3712 —0.6288 20.0024 +0.0024
40 39.9921 —0.007 40.3648 +0.3648 39.9925 —0.0075

60 59.9846 —0.015 60.6153 +0.6153 60.0109 +0.0109

80 79.9911 —0.008 80.2577 +0.2577 79.9917 —0.0083

100 100.0273 +0.027 99.3911 —0.6089 100.0025 +0.0025

LLLG 20 19.9892 —0.0108 19.4889 —0.5111 20.0024 +0.0024
40 39.9886 -0.0114 40.2876 +0.2876 39.9993 —0.0007

60 59.9833 —0.0167 60.5061 +0.5061 60.0005 +0.0005

80 79.9824 —0.0176 80.2142 +0.2142 79.9996 —0.0004

100 100.0284 +0.0284 99.5032 —0.4968 100.0002 +0.0002

where k is the step size, representing the length of each gra-
dient transition in the parameter space. The final output
from the ANFIS is of the form:

d = ay + ai(ce) + as(ce)® + by (sd) + by(sd)? (21)

The second layer gives the output as a product of the mem-
bership values as the firing strengths of the rules in this
layer and the third layer calculates the value

Ji = ,qu (22)

The fourth layer computes the defuzzified values using cen-
troid defuzzification technique and the output layer gener-
ates the fault distance. On comparison of above three
methods for HS-Transform based location on transmission
lines, the ANFIS method produces the least amount of
computational error as seen from Table 7. However, cubic
interpolation technique is found to be the simplest and
does not have any computational overhead. On the con-
trary, the ANFIS yields the most accurate result regarding
the fault distance, but the computational overhead is found
to be large.

7. Conclusion
In this paper S-transform based time frequency analysis

has been done to compute the standard deviation and
change in energy at varying window. The change in energy

(ce) and standard deviation (sd) provides a method to
detect the faulty phases of the transmission line by a simple
rule based approach based on certain threshold values.
Once the faulty phases are identified, the fault distance
can be computed by three different approaches as shown
in this paper. The simplest amongst the three is the cubic
interpolation technique, but the computationally intensive
ANFIS method yields the most accurate result for fault
location.
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