

Innovative Biomaterial for Orthopedic Tissue Disorder

(Plenary speech)

Biomaterials : Technologies for Life and Society (Biomaterials-2019), May 13-14, 2019 Kuala Lumpur, Malaysia

Presented By Prof. Krishna Pramanik

Center of Excellence in Tissue Engineering Department of Biotechnology & Medical Engineering **Signals** (eg, growth factors)

Cells (eg, ESCs, iPSCs)

Cells from the ICM are isolated & propagated in cell culture to establish ESCs

Inner cell mass (ICM) of blastocyst

Scaffolds

Global Biomaterial Market

Biomaterials classification

- First generation
- Bioinert materials

- Second generation
- Bio active and biodegradable materials

- Third generation
- Materials designed to stimulate specific responses at molecular level

Orthopaedic TE Biomaterials

- Cartilage Tissue
- Bone Tissue
- Tendon Tissue
- Ligament Tissue
- Muscle Tissue
- Cartilage Tissue Articular Cartilage
- Bone Tissue Subchondral Bone
- Osteochodral

Advancement of Biomaterial Development

Single Biopolymer

- Biopolymer Blend
- Bioplymer-Bioceramic composites (binary/ternary)

Metal/metal oxide loaded biocomposites/nano composites

Ideal Natural Biopolymers

- CollagenChitosanSilk Fibroin-
- ► CMC

Chitin

• Hydrophobic,

• Derived mostly from exoskeleton of Arthropods

• N-deacetylated derivative-CHITOSAN

• Wound healing, drug delivery, tissue engineering scaffolds

Silk

- Natural protein fibre, mainly composed of fibrinogen
- Produced by larvae of mulberry silkworm *Bombyx mori*
- Mostly in beta conformation
- Uses: Sutures, Scaffolds

Bio-ceramics

Hydroxyapatite
BTCP
Bioactive Glass (Bioglass)

Biomaterial Development

E

Cartilage Tissue

- Flexible connective tissue \rightarrow Structural component
- Smooth surface → bones glide & move without friction, grinding or discomfort
- Avascular, aneural & alymphatic tissue
- At maturity has low metabolic activity \rightarrow highly suited in its task but limits capacity of self-repair

Cartilage Defects Treatment

SF/CS Scaffold Biomaterial

Morphology of (a) pure SF, (b) SF/CS blend SF/CS 90 : 10, (c) SF/CS 80 : 20, (d) SF/CS 70 : 30 (e) SF/CS 60 : 40 and (f) SF/CS 50 : 50

SF/CS-Glycosaminoglycan porous scaffolds

Morphology of (a) 1% G in SF/CS(80:20) blend, (b) 2% G in SF/CS(80:20) blend, (c) SF/CS 80 : 20, (d)1% Rg G in SF/CS(80:20) blend, (e) 1.5% Rg G in SF/CS(80:20) blend and (f) 2% glycosaminoglycan in SF/CS(80:20) blend scaffolds

16

Conclusion

- ▶ UCB-hMSCs were successfully cultured on SF/CS-Ch porous scaffolds in spinner flask bioreactor.
- Culture condition was dominant over the effect of presence of Ch in the SF/CS scaffold particularly for promoting cell viability, metabolic activity and proliferation.
- **SGAG** and histology study- Ch is capable of inducing and promoting chondrocyte type matrix synthesis, irrespective of culture system.
- Immunofluorescence and qPCR study illustrated the beneficial effect of Ch in collagenous, proteoglycan matrix and gene expression in dynamic culture environment.

P. Agrawal et al. "Enhanced chondrogenesis of mesenchymal stem cells over silk fibroin/chitosan-chondroitin sulfate three dimensional scaffold in dynamic culture condition" Journal of Biomedical Materials Research Part B - Applied Biomaterials. 2018;106(7):2576–2587.

SEM micrograph

SF/CS-Gl-Ch0.5

11/25/2014 HV WD spot 5:27:03 PM 15:00 kV 4.3 mm 3.0 mag □ 500 x Nova NanoSEM 450_NIT_RKL X

SF/CS-Gl-Ch1.0

11/25/2014 HV WD spot mag 5:24:16 PM 15:00 kV 4.2 mm 3.0 500 x Hova NanoSEM 450_NIT_RKL

SF/CS-Gl-Ch1.5

11/25/2014 HV WD spot mag 5:26:45 PM 15:00 kV 4.3 mm 3.0 500 × http://www.invalues.com/ Nova NanoSEM 450_NIT_RKL *

STEM - Quanta (FEG)

Longitudinal

Conclusion

- Structural differences led to higher porosity and greater hydrophilicity in SF/CS-Gl-Ch_{1.5} than 1.0 and 0.5% Ch scaffolds, facilitating cell attachment, infiltration and proliferation.
- Constructs provided an adequate cell density and metabolic activity; aid of dynamic culture facilitated sufficient nutrient distribution resulting into homogenous cartilage construct generation.
- Presence of GAG stimulating components, Gl and Ch in scaffolds, promoted differentiation and maintained chondrogenic phenotype of cells.
- Conventional pellet culture favored cell aggregation and proliferation but were less efficient in phenotype maintenance that limits their application in cartilage tissue engineering.

P. Agrawal and K. Pramanik. "Fabrication of cartilage graft by differentiation of human mesenchymal stem cells over a novel glucosamine, chondroitin sulfate loaded silk fibroin/chitosan matrix under dynamic culture", Differentiation.

Scaffold Biomaterial Bone TE

- Electrospun nano fibrous SF/HAp nano composite (Eri-Tasar) Vs. Bombix Mouri
- **SF/Chitosan/β-TCP composite Matrices**
- Electrospun nano fibrous Nano bioglass SF/CMCcomposite

Electrospun nano fibrous SF/HAp nano composite

SEM images of eri-tasar SF blend nanofibrous mat with randomly oriented nano fibers with interconnected voids

TEM images of a single nanofiber representing its shape and surface view

XRD & FTIR analysis of SF blend nanofiber

Figure 7: SEM images shows the deposition of HAp over (a) SF blend and (b) BM scaffolds and corresponding EDX figures after soaking in simulated body fluid for 14 days

SF/CMC/nBG composites

Field emission scanning electron micrographs of (A) SF, (B) SF/CMC (99:1), (C) SF/CMC (98:2), and (D) Fiber diameter distribution for SF, SF/CMC (99:1) & SF/CMC (98:2)

FESEM micrographs of scaffolds after incubation in SBF for 7 days (A) SF, (B) SF/CMC (99:1), (C) SF/CMC (98:2)

FESEM images and EDX spectra of mineral deposition of MSCs after day 7 of culture on SF and SF/CMC (98:2)

FESEM images for day 7 of cell cultured in gelatin (A), SF (B) and SF/CMC (98:2) (C). Images for day 14 of cell cultured in gelatin (D), SF (E) and SF/CMC (98:2) (F).

Chitosan/β-TCP composite

Morphology of CS, CS/micro β -TCP and CS/nano β -TCP composite scaffolds

Phase, structural, mechanical, degradation and bioactivity of CS, CS/micro β -TCP and CS/nano β -TCP composite scaffolds

Chitosan scaffold

Cross linked Chitosan scaffold

Chitosan & β TCP composite scaffold

SEM images of a) Pure Chitosan b) Cross linked Chitosan c) Cross linked composite scaffold

Thank you