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Abstract

A total concentration fixed-grid method is used in this article to model the three-dimensional diffusion-controlled wet chemical etch-
ing. A total concentration is defined as the sum of the unreacted and the reacted etchant concentrations. The governing mass diffusion
equation based on the total concentration includes the interface condition. The reacted concentration of etchant is a measure of the etch-
front position. With this approach the etchfront can be found implicitly. For demonstration purposes, the finite-volume method is used
to solve the resulting set of governing equations with initial and boundary conditions. The effect of mask thickness on the etchfront sur-
face evolution is studied. The condition at which a three-dimensional etching is converted into two-dimensional is also presented.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Etching refers to a process by which material is removed
from the substrate itself or any film or layer of material on
the substrate surface. Wet chemical etching (WCE) is an
etching process that utilizes liquid chemicals which are
called etchants, to remove materials from the substrate,
usually in specific patterns defined by photoresist mask on
the substrate. Materials not covered by the mask are etched
away by the chemicals while those covered by the mask are
left almost intact. WCE process is generally used in the
manufacturing of shadow mask for color-television tubes
[1], IC devices in microelectronics industries [2], MEMS
devices such as hinges [3] and pressure sensors [4] etc.

Theoretical analysis of the WCE process has important
aspects such as the prediction of etchfront (the etchant–
substrate interface) which takes a complicated shape in
multidimensional etching. Existing mathematical models
for WCE process includes the asymptotic solution [5,6],
the variational inequality approach [7,8], the moving-grid
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(MG) approach [7,9,11–14], and the level-set method
[15–17]. Recently, a total concentration based fixed-grid
method [18–20] is developed to model the WCE. Based
on the rate of reaction, two possible cases namely, the dif-
fusion-controlled [5–12,18–20] and the reaction-controlled
[7,11–14,19] etching are examined by various researchers.
These two cases are studied in the modeling of one-dimen-
sional [9,13,18,19] and two-dimensional [5–12,14,15,17,20]
WCE using the above analytical and numerical
approaches. The forced and natural convection effects on
the etching process are studied by Shin and Economou
[11,12].

An asymptotic solution for a two-dimensional WCE is
presented by Kuiken [5,6]. The asymptotic solution is valid
for diffusion-controlled etching with a large value of the
etching parameter, where the interface moves very slowly.
Kuiken et al. [9] also presented the exact solution for the dif-
fusion-controlled WCE in a one-dimensional geometry. An
analytical treatment based on the perturbation principle is
then extended to model a two-dimensional diffusion-con-
trolled WCE. The substrate is partly protected by an infi-
nitely thin semi-infinite mask making it a two-dimensional
etching problem. The analytical asymptotic solution is
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Nomenclature

a coefficient of the discretization equation
c unreacted etchant concentration
C dimensionless unreacted etchant concentration
cR reacted etchant concentration
cR,max maximum possible value of the reacted concen-

tration
cT total concentration of etchant
D diffusion coefficient of etchant
MSub molecular weight of the substrate
m stoichiometric reaction parameter
t time
t* non-dimensional time
vn̂ normal speed of the etchant–substrate interface
x, y, z coordinate directions
X, Y, Z non-dimensional coordinate directions

Greek symbols

a under-relaxation factor
b dimensionless etching parameter

$ vector differential operator
Dt time step
qSub density of the substrate

Subscripts

o initial
P control volume P

Sub the substrate
Et the etchant
T total

Superscripts

m iteration number
o previous time step
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verified with the experiment by etching GaAs in HCl/H2O2/
H2O etchant solution [10].

The moving grid (MG) method is a widely used method
to model the WCE process. In the MG method, the compu-
tational domain is limited to the space occupied by the
etchant. Because of the erosion of substrate, it continu-
ously expands with time. The etchant concentration is
solved using appropriate boundary conditions and a spec-
ified initial condition. Using the interface condition at the
etchant–substrate interface, the etchfront velocity is calcu-
lated to find the new position of the interface. As the com-
putational domain expands with time, the computation
mesh has to be regenerated at every time step. Due to the
movement of the mesh, the mesh velocities have to be
accounted for in the governing equation in terms of an
extra convective term [7,14]. Further, an unstructured mesh
system or a body-fitted grid system is needed to model the
multidimensional WCE.

The numerical models for two-dimensional WCE are
presented by Vuik and Cuvelier [7]. The finite element
method (FEM) is used for discretization of the governing
equation in the space variables and a finite difference
method is used for discretizing the time variable. The
MG method and the variational inequality approach are
used to track the etchant–substrate interface. The mesh
velocities are accounted for in the MG method due to the
movements of the computational grids. Bruch et al. [8] par-
allelize the same etching problem based on the variational
inequality approach using a highly efficient parallel algo-
rithm. Shin and Economou [11,12] studied the effect of
etchant flow field (forced and natural convection) on the
shape evolution of etching cavities. The FEM was used
to solve for the etchant velocity distribution and the etch-
ant concentration distribution in the etched cavities. The
MG method was used to track the etchant–substrate inter-
face. The extra convective term due to mesh velocities was
neglected because of the very slow movement of the inter-
face. Li et al. [13] presented a one-dimensional moving
boundary numerical scheme to predict the motion of the
etchant–substrate interface while etching phosphosilicate-
glass (PSG) with hydrofluoric acid (HF). The model is pre-
sented for a radial geometry where a one-dimensional
radial diffusion equation is solved using the fully implicit
scheme. Kaneko et al. [14] used the MG approach to model
a two-dimensional reaction-controlled WCE considering
the effect of flowing etchant. A first order reaction kinetic
was assumed. The extra convective term due to grid veloc-
ities was taken into account in the model. Adalsteinsson
and Sethian [15,16] developed a level-set formulation to
simulate deposition, etching, and lithography in integrated
circuit fabrication using the two-dimensional and three-
dimensional models. La Magna et al. [17] used a level-set
method for a moving etchfront to simulate two-dimen-
sional profile evolution in WCE process.

Recently, Rath and co-workers [18–20] presented a
fixed-grid approach based on the total concentration of
the etchant to model the WCE process in one-dimensional
(1D) and two-dimensional (2D) geometries. This method is
analogous to the enthalpy method used in the modeling of
melting/solidification process [21–28]. A total etchant con-
centration is defined as the sum of the unreacted etchant
concentration and the reacted etchant concentration. The
governing equation based on the total concentration
includes the interface condition. In this formulation, the
reacted concentration of etchant is a measure of the
etchfront position while etching progresses. The etchfront
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can be found implicitly with the total concentration
method. Since the grids are fixed, there is no grid velocity.
The computational domain includes the whole etchant and
substrate domain. Cartesian grid can be used to capture the
complicated etchfront evolution in multidimensional etch-
ing. The model has been tested for one-dimensional (1D)
diffusion-controlled [18] and reaction-controlled [19]
WCE and the approach further extends to model two-
dimensional (2D) diffusion-controlled etching [20].

In this article, the above total concentration based fixed-
grid method is extended to model the three-dimensional
(3D) diffusion-controlled WCE. The effect of mask thick-
ness on the etched surface evolution is studied. The condi-
tion at which a 3D etchfront is transformed into a 2D
etchfront is also examined.

The remainder of this article is divided into six sections.
In the next section, a three-dimensional WCE problem, the
governing equation, the interface condition and the bound-
ary conditions are described. Various ingredients of the
proposed fixed-grid method are then discussed. A brief
description of the numerical method used in this article is
given. The overall solution procedure is then summarized.
Discussion of the results obtained using the proposed fixed-
grid method is presented. Some concluding remarks are
then given.

2. Problem description and governing equations

The schematic and computational domain for the three-
dimensional etching problem considered is shown in Fig. 1.
An opening of square cross section (2a · 2a) is to be etched
in a substrate (Fig. 1a). The remainder of the substrate sur-
face is covered by a photoresist mask at the top. For dem-
onstration purposes, the width of the masks on all the four
sides of the opening is located sufficiently far from the
opening so that the concentration of etchant far away from
the opening will remain unaltered at the initial etchant con-
centration. The initial concentration of the etchant at t = 0
is co. The etchant solution is assumed to be stationary, i.e.,
the convection effect is neglected. At t > 0, the reaction
between the etchant and the substrate at the etchant–sub-
strate interface results in the reduction of the concentration
Fig. 1. Schematic and computational domain of the three-dimensional
(3D) etching: (a) schematic; (b) the computational domain.
of etchant adjacent to the etchant–substrate interface and
the depletion of the substrate. The concentration of etchant
on the boundaries far away from the opening is kept at the
initial concentration, i.e., c = co. The etching is assumed
diffusion-controlled, which is associated with infinitely fast
reaction rate at the interface. The origin of the coordinate
system is set to the etchant–substrate interface at the center
of the opening. Since the problem is symmetrical about the
origin, only one-quarter of the domain is considered, as
shown in Fig. 1b. The governing equation, the interface
condition and the boundary conditions are presented next.

2.1. Governing equation

For a stationary etchant solution, the etchant concen-
tration within the etchant domain is governed by the mass
diffusion equation given by
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The initial and boundary conditions are

Initial condition at t = 0

c ¼ co in Xð0Þ ð1bÞ
Boundary conditions for t > 0

c ¼ co on C1;C2 and C3 ð1cÞ
oc
on
¼ 0 on C4ðtÞ and C5ðtÞ ð1dÞ

c ¼ 0 on fðtÞ ð1eÞ

Interface condition for t > 0 on f(t)
The interface condition is obtained by the balance

between rate of diffusion and rate of reaction at the etch-
ant–substrate interface. Neglecting the effect of the change
in energy due to the etching of the front, gives the interface
velocity as

~v ¼ �DMSub

mqSub

rc ð1fÞ

where~v is the velocity of the etchant–substrate interface, D

is the diffusion coefficient of etchant, MSub is the molecular
weight of the substrate, qSub is the density of the substrate
and m is the stoichiometric reaction parameter of the etch-
ant–substrate reaction. The normal speed of the etchant–
substrate interface vn̂ is obtained by dotting both sides of
Eq. (1f) with the unit vector n̂ normal to the interface which
points towards the substrate region. This can be written as

~v � n̂ ¼ �DMSub

mqSub

rc � n̂) vn̂ ¼ �
DMSub

mqSub

oc
on̂

ð1gÞ
3. The total concentration method

In the proposed approach, the total concentration

includes the reacted and the unreacted etchant concentra-
tion. This is defined as
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cT � cþ cR ð2Þ
where cT is the total concentration, c is the unreacted
etchant concentration and cR is the reacted etchant concen-
tration, respectively. Physically, cR is the etchant concen-
tration consumed in the reaction process. As such it is
constant except at the etchant–substrate interface. This is
used to capture the etchfront implicitly. The value of cR

changes from 0 to its maximum possible value of cR,max

in a control volume where etching is taking place. The max-
imum possible value of the reacted concentration termed
cR,max, is the amount of etchant required per unit volume
of substrate to dissolve the substrate during reaction. In
a unit volume, there are qSub/MSub moles of substrate.
The reaction between the etchant and the substrate is
given as

S þ mE ! qP ð3Þ
where S is the substrate, E is the etchant and P is the prod-
uct, respectively. From Eq. (3) it is seen that the amount of
etchant needed to dissolve a unit volume of substrate is
mqSub/MSub. As cR,max is the amount of etchant required
per unit volume of substrate to dissolve the substrate dur-
ing reaction, it can be written as

cR;max ¼
mqSub

MSub

ð4Þ

The governing equation based on the total concentration
can be written as
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Using Eq. (2), Eq. (5) can be rearranged as

oc
ot
¼ o

ox
D

oc
ox

� �
þ o

oy
D

oc
oy

� �
þ o

oz
D

oc
oz

� �
� ocR

ot
ð6Þ

This equation is valid in both the etchant and the substrate
regions. The interface condition given by Eq. (1g) is con-
tained in Eq. (6) implicitly. The detailed derivation of the
interface condition from the governing equation is de-
scribed in the previous article [19].

3.1. Procedure to update cR

A procedure to evaluate the reacted etchant concentra-
tion cR is presented in this section. The reacted concentra-
tion is constant away from the etchant–substrate interface.
Hence, Eq. (6) reduces to the original governing equation
(Eq. (1a)) except at the etchant–substrate interface. At
the etchant–substrate interface, the reacted etchant concen-
tration is a measure of the amount of substrate being
etched. In the proposed FG method, the control volumes
where etching is taking place are identified and are called
as the etching-control-volume (ECV). The ECVs are the
substrate control volumes adjacent to the etchant control
volumes. In an ECV, cR changes from 0 to its maximum
possible value of cR,max. An iterative procedure to update
cR in an ECV is described in this section. The finite-volume
discretization equation (using the fully implicit scheme) of
Eq. (6) for an ECV (the control volume P) is given as

aP cm
P ¼

X
anbcm

nb þ ao
P co

P � ðcm
R;P � co

R;PÞ
DV P

Dt
ð7Þ

where m is the mth iteration of the current time step, o is
the previous time step, P is the control volume P, nb
is the neighboring control volumes, a is the coefficients of
the discretization equation, DV is the volume of a control
volume and Dt is the time step. Eq. (7) is valid for all
control volumes. However, as cR is constant in the etchant
and substrate domains, the last term on the right side of
Eq. (7) is zero except in the ECVs. At the (m + 1)th
iteration, Eq. (7) can be written as

aP cmþ1
P ¼

X
anbcmþ1

nb þ ao
P co

P � ðcmþ1
R;P � co

R;PÞ
DV P

Dt
ð8Þ

Subtracting Eq. (8) from Eq. (7) and rearranging, gives

cmþ1
R;P ¼ cm

R;P þ
Dt

DV P
aP ðcm

P � cmþ1
P Þ þ

X
anbðcmþ1

nb � cm
nbÞ

h i

ð9Þ
When the solution converges, the last term of Eq. (9) will
be zero. However, during the initial iteration process, it is
most likely a non-zero term. Realizing that it is zero upon
convergence, this term can be ignored from the calculation
and Eq. (9) becomes

cmþ1
R;P ¼ cm

R;P þ aaP
Dt

DV P
ðcm

P � cmþ1
P Þ ð10Þ

where a is an under-relaxation factor whose value lies
between 0 and 1. For a diffusion-controlled reaction, the
reaction rate at the interface is infinitely fast which makes
the concentration at the interface to become zero. For diffu-
sion-controlled reaction, the current procedure ensures that
cmþ1

P ¼ 0 and the excess concentration is used to update the
reacted concentration. With cmþ1

P ¼ 0, Eq. (10) becomes

cmþ1
R;P ¼ cm

R;P þ aaP
Dt

DV P
cm

P ð11Þ

Within the control volume where etching is taking place,
the reacted concentration is updated using Eq. (11). The
etching for a given ECV completed, when cmþ1

R;P reaches
cR,max.
4. Numerical method

In this article, the finite-volume method (FVM) of Patan-
kar [29] is used to solve the governing mass diffusion equa-
tion. Since a detailed discussion of the FVM is available in
Patankar [29], only a brief description of the major features
of the FVM used is given here. In the FVM, the domain is
divided into a number of control volumes such that there is
one control volume surrounding each grid point. The grid
point is located in the center of a control volume. The gov-
erning equation is integrated over each control volume to
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derive an algebraic equation containing the grid point val-
ues of the dependent variable. The discretization equation
then expresses the conservation principle for a finite control
volume just as the partial differential equation expresses it
for an infinitesimal control volume. The resulting solution
implies that the integral conservation of mass is exactly sat-
isfied for any control volume and of course, for the whole
domain. The resulting algebraic equations are solved using
a line-by-line Tri-diagonal Matrix Algorithm. In the present
study, a solution is deemed converged when the maximum
change in the concentration and the maximum change in
the reacted concentration between two successive iterations
are less than 10�11.

5. Overall solution procedure

The overall solution procedure for the proposed total
concentration method can be summarized as follows:

1. Specify the etchant domain, the substrate domain and
the mask region. Ensure that the etchant–substrate
interface lies on the interface between two control
volumes.

2. Set the initial etchant concentration as co in the etchant
domain and zero in the substrate domain including the
mask region.

3. Initially set cR to 0 in the substrate domain including the
mask region and to cR,max in the etchant domain,
respectively.

4. Advance the time step to t + Dt.
5. Identify the etching control volumes (ECVs). These are

the substrate control volumes with adjacent etchant con-
trol volumes.

6. Set the unreacted etchant concentration to zero in the
mask and substrate regions (except the ECVs). One pos-
sible way to do this is by adding a big number in the
denominator term while evaluating the concentration
at a given node point using the ‘‘internal’’ boundary
condition approach of Patankar [29].

7. Solve Eq. (6) for the unreacted etchant concentration.
8. Update the reacted concentration in the ECVs using Eq.

(11).
9. Check for convergence.

(a) If the solution has converged, then check if the
required number of time steps has been reached. If
yes, stop. If not, repeat Eqs. (4)–(9).

(b) If the solution has not converged, then check the cal-
culated reacted concentration.
-0.6

-0.4Z
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12
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If cR < cR,max, repeat Eqs. (7)–(9).
If cR P cR,max, then set cR = cR,max and repeat
Eqs. (5)–(9).
•

•
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Fig. 2. Grid independent study at three different locations in YZ-plane for
b = 10: (a) section of the etchfront at Y = 0.05 from the origin; (b) section
of the etchfront at Y = 0.45 from the origin; (c) section of the etchfront at
Y = 0.95 from the origin.
6. Results and discussion

Fig. 1 shows the schematic of the 3D-etching problem,
which is solved using the proposed total concentration
method. Due to the symmetry of the problem about the
origin, only one-quarter of the domain is modeled as
shown in Fig. 1b. The dimensionless variables used for pre-
sentation of results are defined below.

X � x=a ð12aÞ
Y � y=a ð12bÞ
Z � z=a ð12cÞ
C � c=co ð12dÞ

t� � tD=a2 ð12eÞ
b � mqSub=coMSub ð12fÞ

In Eq. (12f), b is the dimensionless etching parameter. It is a
measure of the initial etchant concentration for a given sub-
strate to be etched. As seen from Eq. (12f), the initial etch-
ant concentration (co) is inversely proportional to b. The
speed of the etchfront is also inversely proportional to b.
This relation can be obtained from the interface condition
(Eq. (1g)) using the above dimensionless variables. So, a
high initial etchant concentration leads to lower value of
b, which in turn increases the speed of the etchfront. A
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substrate having dimensionless cross-section {1 + L1(l1/a)} ·
{1 + L4(l4/a)} and dimensionless height L2(l2/a) is to be
etched with an opening cross-section 1 · 1, which is ex-
posed to etchant as shown in Fig. 1b. The remainder of
the substrate is covered with a photoresist mask at the top
to protect it from direct contact with the etchant. The
dimensionless lengths L1 and L4 are taken 6.5 each. The
dimensionless thickness of the substrate, L2 is taken as 2.
The dimensionless height of etchant is taken as L3 =
l3/a = 6.5. Two mask thicknesses namely, infinitely thin
and finite mask thicknesses are chosen for presentation of
the results. For infinitely thin mask, the non-dimensional
mask thickness is taken as H = h/a = 0.005. Although not
shown, a further decrease in mask thickness does not alter
the solution. For finite mask thickness, the thickness of
the mask is taken as one-fifth of the substrate thickness,
i.e., H = h/a = 0.4.

A grid refinement study is performed to ensure the solu-
tions are grid independent: temporal as well as spatial.
Fig. 2 shows the evolution of the sectional etchfronts at
three different sections at distances 0.05, 0.45 and 0.95 from
the origin in XZ- and YZ-plane cuts at three time levels.
The dimensionless etching parameter b (defined in Eq.
(12f)) is 10 and the mask is infinitely thin. Three control
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Fig. 3. Etchfronts at three different sections in XZ- and YZ-plane cuts for
b = 10: (a) sections of etchfronts at distances of 0.05 from the origin; (b)
sections of etchfronts at distances of 0.45 from the origin; (c) sections of
etchfronts at distances of 0.95 from the origin.
volume sizes namely, 0.2 · 0.2 · 0.2, 0.1 · 0.1 · 0.1 and
0.05 · 0.05 · 0.05 are taken to perform this test. These con-
trol volume sizes are taken near the opening region of the
substrate. An expanding grid is used away from the open-
ing, as the grid sizes away from the etchant–substrate inter-
face have no significant effect on the solution. For each
control volume size the time independent etchfronts are
shown. The time step size for all three control volume sizes
is found to be Dt* = 0.01. It is seen that there is no signif-
icant difference in the prediction of etchfront from control
volume sizes of 0.1 · 0.1 · 0.1 and 0.05 · 0.05 · 0.05. As a
result, 0.1 · 0.1 · 0.1 control volume sizes are used in this
article. Since the quantitative results for three-dimensional
etching are not available in the literature, hence the com-
parison of the etchfront predictions is shown for a two-
dimensional case as discussed in the last paragraph of this
section.

Fig. 3 shows the sections of the etchfronts taken from
two perpendicular planes namely, XZ and YZ. Etchfronts
are shown at three different sections at distances 0.05, 0.45
and 0.95 from the origin. It is seen that the sections of the
etchfronts taken from the above two perpendicular planes
at equal distances from the origin are same. This is in
accordance with the symmetry of the problem considered
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Fig. 4. Etchfronts at three different sections in XZ- and YZ-plane cuts for
b = 50: (a) sections of etchfronts at distances of 0.033 from the origin; (b)
sections of etchfronts at distances of 0.47 from the origin; (c) sections of
etchfronts at distances of 0.98 from the origin.
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here. Since the boundary conditions in two perpendicular
planes are symmetrical and the opening is also square
(1 · 1) in size, hence the etchfronts are also symmetrical
in two perpendicular planes (XZ and YZ) at equal dis-
tances from the origin. The bulging effect is pronounced
near the mask corner at an early time (t* = 5) as shown
in Fig. 3. This is because of the faster diffusion rate of etch-
ant near the mask corner. As time increases, the bulging
region expands towards the origin. Fig. 4 shows the sec-
tions of etchfronts for b = 50. The etch depth in this case
is relatively small compared to the former case. This is
because of the decrease in the initial etchant concentration
(co) with increase in b value for a given etchant–substrate
combination. This is evident from Eq. (12f), as b is inver-
sely proportional to the initial etchant concentration.
When the value of b increases to 50, the bulging effect is
more clearly seen even for longer time compared to
b = 10. This is because of the narrowing of the bulging
region with increase in the value of b.

Figs. 5 and 6 show the evolution of etch surfaces with
time for infinitely thin and thick mask conditions, respec-
tively. The etching parameter b is 50. It is seen that the
bulging of etched surfaces is not pronounced when mask
thickness is finite. The vertical etch depth is nearly uniform
along the etched surfaces. This is because of the large dif-
fusion length of etchant particles near the mask corner
due to finite mask thickness. Therefore, the effect of the dif-
Fig. 5. Evolution of etched surface at different times during etching with
infinitely thin mask (H = 0.005) and b = 50.

Fig. 6. Evolution of etched surface at different times during etching with
finite mask thickness (H = 0.4) and b = 50.
fusion of etchant to the interface from the sides of the mask
is less compared to the diffusion of etchant to the interface
from top. Hence fresh etchant is less readily available near
the mask corner as thickness of the mask increases which
results in a slow etch rate near the mask corner. As a result,
the etchfront moves at a nearly constant speed in the verti-
cal direction (Z-direction). Therefore, the bulging is not
pronounced even at early times unlike the case with infi-
nitely thin mask where bulging is pronounced near the
mask corner at early etching time.

Fig. 7 shows the concentration distribution at t* = 20
for b = 10 and infinitely thin mask. The etchant–substrate
interface is near the contour C = 0.05. The etchant



Fig. 7. Concentration contours at t* = 20 for b = 10 and infinitely thin
mask.

Fig. 8. Schematic for conversion of 3D-etching problem to a 2D-etching
problem: (a) schematic; (b) the computational domain.

Fig. 9. Evolution of an etched surface in a rectangular opening at t* = 20
for b = 10.
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Fig. 10. Comparison of the sections of 3D-etchfronts (taken from YZ-
plane near the origin) with the 2D-etchfronts for b = 10: (a) comparison
with 2D etchfronts obtained using the FG method [20]; (b) Comparison of
sectional etchfronts with 2D etchfronts of Bruch et al. [8].
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concentration is less near the etchant–substrate interface
compared to away from the interface and is nearly
unchanged with initial etchant concentration far away
from the interface. This is because of the consumption of
etchant at the interface to dissolve the substrate during
etchant–substrate reaction.

The schematic of the problem considered to study the
transformation of a 3D-etching problem to a 2D-etching
problem is shown in Fig. 8. A substrate covered with a
photoresist mask at the top leaving behind a rectangular
opening (Fig. 8a), which is exposed for direct contact of
etchant with the substrate. The cross-sectional dimension
of the opening is taken as 2a · 15a. Because of the symme-
try of the problem about the center of the opening, only
one-quarter of the domain is considered with the origin
set at the center as shown in Fig. 8b. The boundary con-
ditions are same as discussed in the schematic of the pre-
vious problem. Fig. 9 shows the evolution of the etched
surface at t* = 20 for b = 10. It is seen that away from
the mask corner (towards the origin) in the y-direction,
the vertical etch depth is almost constant. The effect
of the diffusion of etchant at the mask corner (due to
the consumption of etchant at the interface) does not sig-
nificantly affect the etchant concentration far away from
the mask corner in the y-direction. Hence the etch depth
is nearly uniform far away from the mask corner towards
the origin. Fig. 10 shows the cross-section of the etchfronts
at different time levels taken from the YZ-plane near the
origin. Fig. 10a shows the comparison of the sectional
etchfronts near the origin with the 2D-etchfronts obtained
using the total concentration based FG method [20] and
Fig. 10b shows the comparison with the 2D-etchfronts
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of Bruch et al. [8]. It is seen that the sections of the etch-
fronts from YZ-plane near the origin are actually giving
the 2D-etchfronts. Hence it can be said that, the 3D-etch-
fronts transformed to 2D-etchfronts away from the mask
corner.

7. Concluding remarks

A fixed-grid method based on the total concentration of
etchant (called the total concentration method) has been
used to model the three-dimensional WCE. The proposed
method is analogous to the enthalpy method used in the
modeling of melting/solidification processes. Some key
ingredients of the proposed total concentration method
are discussed. The governing mass diffusion equation based
on the total concentration includes the interface condition.
With this proposed method the etchfront position can be
found implicitly. The method has been applied to three-
dimensional diffusion-controlled etching. The finite-volume
method is used to discretize the governing equation. The
results obtained from the proposed approach are discussed
and a possible situation for the transformation of a three-
dimensional etching problem to two-dimensional etching
problem is also presented.
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