Surface-mechanical and electrical property evaluation of nano-cone structured Cu–ZrO₂ composite coating

By H. S. Maharana, A. Basu*

basua@nitrkl.ac.in Department of Metallurgical and Materials Engineering NIT Rourkela, Odisha, India

ISMANAM-2019 July 8 – 12, 2019, Chennai

Experimental

pН

Powder characterizations

The Electrolyte pH < IEP

- To avoid possible agglomerations of ZrO₂
- Uniform codeposition of ZrO₂ particles

Size ranges from 13–37 nm

XRD analysis:

$$RTC_{(hkl)} = \frac{I_{(hkl)} / I_{0(hkl)}}{\sum (I_{(hkl)} / I_{0(hkl)})} \times 100\%$$

Relative Texture Coefficients:

Sample	RTC _(hkl) %			
Details	(111)	(200)	(220)	(311)
Without CTAB	03	04	85	08
0.1g/l (CTAB)	28	24	22	26
0.5g/l (CTAB)	45	21	20	14
1.0g/l (CTAB)	34	19	30	17

Coarse **Microstructures:** 0.1g/L Finer nano-cone 0.5g/L **Duplex hemispherical with hierarchical nano-cone** 1g/L Dual structured flowery appearance with hierarchical nano-cone 0.5g/l CTAB 0g/l CTAB 0.5g/l CTAB 11.8 micron $2\mu m$ 1g/l CTAB 330nm 1.1 µm 2µm um 6 spot 3.0 3/26/2015 HV WD spot mag 4:16:57 PM 15:00 kV 5.1 mm 3.0 40 000 x

Compositional analysis:

•

•

Coating thickness:

- Zr mapping of cross-sections also confirm the ZrO₂ codeposition.
- CTAB concentration (up to 0.5g/l) is proportional to $\frac{1}{Film \ thickness}$
- Coating thickness ~ crystallographic orientation ~ nucleation growth ~ ZeO_2 content

Surface roughness:

Lowest hardness of 1.0 g/l CTAB coating among all composite coatings

- Coarser matrix compared to 0.1 and 0.5 g/l CTAB added coating.
- Smaller value of $RTC_{(111)}$ and lower value of ZrO_2 content in the coating.

Higher surface roughness \rightarrow Lower contact area \rightarrow Lower electrical conductivity

Conclusions:

- ❑ After addition of CTAB in the electrolyte the developed Cu-ZrO₂ composite coating shows unique nano-cone structures.
- □ By considering all the properties, 0.5 g/l CTAB assisted Cu-ZrO₂ coating was considered as best among all developed coatings.
- □ Hardness obtained in the present study was quite high compared to earlier reported literatures. These observations are attributed towards nano-cone structure, amount of ZrO_2 added to the coating and crystallographic orientation.
- □ Coating obtained with CTAB shows marginal drop in electrical conductivity compared to non CTAB assisted composite specimen. The coatings obtained in the present study can be used for possible electrical applications with better surface mechanical property.

Acknowledgement:

Council of Scientific and Industrial Research, India (grant no. 22/0563/11/EMR-II).

