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The application of neural network (ANN) for the prediction of fermentation variables in batch fermenter for the
production of ethanol from grape waste using  Saccharomyces cerevisiae yeast has been discussed in this article. Artificial
neural network model, based on feed forward architecture and back propagation as training algorithm, is applied in this
study. The Levenberg- Marquardt optimization technique has been used to upgrade the network by minimizing the sum
square error (SSE). The performance of the network for predicting cell mass and ethanol concentration is found to be very
effective. The best prediction is obtained using a neural network with two hidden layers consisting of 15 and 16 neurons,
respectively.
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NOTATION
ANN : artificial neural network

BP : back propagation

NN : neural network

SSE : sum square error

wij , wjk : connection weights

w0j , w0k : bias values

α : learning rate

INTRODUCTION
The control of the key fermentation variables is of paramount
importance for a successful fermentation process.  For this,
there is need for on-line monitoring of variables.  But to obtain a
reliable on-line estimates is very difficult task, especially in
fermentation and other biological systems as these are non-
linear, complex and time varying in nature and hence calls for
suitable simulation and prediction method.  Considerable
efforts have been made by several researchers  to develop a
methodology based on various mathematical models so as to
use the same as prediction tool1-4. The major drawbacks of these
models are that they require a large number of experiments and
often the models are very complex to explain the experimental
observations5. In this context, the application of neural
networks (ANN) has been considered as a promising tool
because of its simplicity for simulating the main state variables
in fermentation processes as a function of the progress of the
process6-13. Other advantages of ANN are that they require less
time for development than the traditional mathematical

models. They also require minimum number of experiments
and have the ability to learn the complex relationships without
requiring the knowledge of model structure14-17.

In this study, efforts have therefore been made to investigate the
use of neural network techniques for the prediction of cell mass
and ethanol concentration under varying fermentation
conditions and to compare the experimental results with those
obtained by neural network (NN) simulation.

MATERIALS AND METHODS

The Saccharomyces cerevisiae yeast strain extracted from toddy
using series dilution technique was used in this study. The
strain  was  maintained  on  solid  nutrient  medium  containing
1% glucose, 0.5% peptone, 0.3% beef extract, 3% malt extract
and 2% agar-agar. After the colonies were observed, the slants
were kept in the refrigerator at 4°C until further use. The yeast
inoculum was prepared by growing the culture in grape juice
medium at pH 4.25 without addition of any nutrient. The
temperature and the speed of the agitator was maintained at
30°C  and 110 rpm in the incubator, respectively.

Equipment and Experimental Procedure
Fermentation experiments were conducted in a 1l-batch
fermenter. The fermenter was equipped with agitator and
temperature control systems. The fermenter and the medium
were sterilized.  The pH was adjusted by the addition of H2SO4
prior to inoculation. The fermentation experiments were
carried out under anaerobic condition. The production
medium was used with different initial sugar concentrations for
various batches of experiments. The agitator speed was
maintained constant throughout the experiment at 200 rpm.

Analysis of Biomass, Sugar and Ethanol

The concentrations of ethanol and sugar were measured
spectrophotometrically. Ethanol was determined by measuring
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optical density at 600nm after standard distillation using
dichromate solution. The sugar was estimated by DNS method.
To estimate the biomass concentration, the cells were separated
by centrifugation at 14 000 rpm for 5-min and washed with
distilled water. The cells were then dried at 80°C  until constant
weight was achieved and the cell concentration was measured
based on dry weight of cells.

Data Generation

Experimental data were obtained by conducting a series of
batch experiments in fermenter under varying conditions of pH
(4, 4.5, 4.75, 5.0), temperature (30°C  and 35°C ) and initial sugar
concentration (5%, 10%, 15% and 20% w/v). For each set of
parameters selected, data were collected as a function of time.
The experimental data (Number 70) were then smoothened using
the polynomial regression equations of order 2 to 5 in MS Excel
Pentium III Computer to generate a large number of data sets.

NEURAL NETWORKS

The foundation of a neural network is the neuron which is also
called as node or neurode. Each neuron is a processing element
which performs a weighted sum of all inputs variables that feed
it. Depending on the value of weighted sum of the variables, the
neuron gives a signal to the neurons in the adjacent layer
through a non-linear transfer function (sigmoid function in this
case). The choice of the architecture of the network depends on
the task to be performed and the architecture of the model is
specified by the node characteristics, network topology and
learning algorithm.  In standard architecture, neurons are
grouped into different layers like-input, output and hidden
layers. Generally, for modelling of physical systems, three-
layered, feed-forward network is normally used. But in the
present  study, a four-layered feed-forward network as shown in
Figure 1 has been used which consists of a layer of input
neurons, two layers of hidden neurons and one layer of output
neurons. The ANN configuration is represented as 5:15:16:1,
that is, the input layer consists of five inputs, each hidden layer
consists of fifteen and sixteen neurons, respectively and the
output layer consists of one output.

Back Propagation (BP) Training Algorithm
The back propagation of error algorithm, based on multi-layered
feed-forward net and considered to be the most versatile
algorithm17, was used to train the network for predicting correct
outputs those obtained from experiments and generated one.
The BP algorithm adjusts the network weights and bias values
to minimize the square sum of the difference between the given
output (X ) and output values calculated by the net ( ′X ) using
gradient decent method as follows

SSE = / N X - X1 2 ′∑ b g2 (1)

where N is the number of experimental data points used for the
training.

Levenburg-Marquardt technique is used to improve the
learning rate and stability of the BP algorithm for searching
minimum error. The algorithm and data processing were
performed in MS Excel Pentium III Computer using MATLAB
package.

Training and Testing Procedure
The entire data were divided into two sets. The larger set
consisting of 405 data was used for training and the rest 97data
were reserved for use in testing and validation of the ANN
predicted output values. As the ANN inputs should be in the
range of 0 to1, so all inputs are normalized by using the formula
as follows

Vnormalized  = − −V V V Vmin max min/b g b g (2)

The following steps were then followed for training the network

Step 0 : Initialize weights (set random values between 0 and
1).

Step 1 : While stopping condition is false, do steps 2-9.

Step 2 : For each training pair of set, do steps 3-8.

Step 3 : Each input unit (xi , i = 1, 2, . . . . , 5) receives input
signals xi and sends this signal to all the nodes in the
next hidden layer.

Step 4(a) : Each hidden unit (hj , j = 1, 2, . . . . . , 15) sums its
weighted input signals and bias is added to this
weighted sum to compute its output signal as

O w w xoj 0j ij if= + ∑d i ,    for  i = 1, 2, . . . , 5

and sends this signal to all the units in the following
layer (hk , hidden layer).

Step 4(b) : Each hidden unit (hk , k = 1, 2, . . . . . , 16) sums its
weighted input signals and bias is added to this
weighted sum to compute its output signal as

O w w Ook 0j jk ojf= + ∑e j ,      for j = 1, 2, . . . . , 15

and sends this signal to all the units in the following
layer (Ol , output layer).Figure 1 Four-layered feed-forward neural network
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Step 5 : The output unit (Ol , l = 1) in the output layer sums
its weighted input signals and applies its activation
function to compute its output as

O w w Ool 0i kl okf= + ∑b g ,      for k = 1, 2, . . . . , 16

Step 6 : The BP of errors starts at output layer �Ol� to
compute its error information term as

δ l l ol 0l kl okf= − + ∑t O w w Ob g b g , (tl = target

value)

It calculates weights correction and bias correction
terms as

∆w Okl l ok= ∂ δ , and , ∆w0l l= α δ , respectively.

where δ l  is the error sent to nodes in the previous
layer.

 Step 7(a): Each hidden unit (hk , k = 1, 2, . . . . . , 16) sums its delta
inputs from units in the next layer and calculate its
error information term as

δ δok k
l

ok= f Ob g  where δ δk l kl= ∑ w  (for l = 1)

It calculates its weights correction and bias
correction term as

∆w Ojk k k= ∂δ  and ∆wok k= α δ , respectively.

Step 7(b) : As step 7(a), each hidden unit (hj , j = 1, 2, . . . . . ,15)
sums its delta inputs from units in the next layer and
calculate its error information term as

δ δoj j
1

oj= f Od i  where δ δj k jk= ∑ w  for k = 1, 2, .

. . . . , 16.

It calculates its weights correction term and bias
correction term as

∆w Ojk k j= ∂δ   and  ∆w0j j= α δ

Step 8 : Each output node (Ol , l = 1) updates its weights and
bias as

w w wjk kl klnew old( ) ( )= + ∆   for k = 1, 2, . . . . . , 16.

w w w0k 0l 0lnew old( ) ( )= + ∆

Each hidden node (hk , k = 1, 2, . . . . . , 16) updates its
weights and bias as

w w wij jk jknew old( ) ( )= + ∆   for j = 1, 2, . . . . . , 15.

w w w0j 0k 0knew old( ) ( )= + ∆

Step 9 : Test of stopping condition.

As noted as earlier, the Levenberg-Marquardt variation of non-
linear least squares optimization  technique is used to upgrade

the back propagation algorithm. It involves the following
additional computations  in the step 6 to calculate its weight
correction term as

∆w H I Zjk kL k j= + × −λ ∂δb g 1

where k is the row number; L, the number of neurons in that
layer and I is the identity matrix

( )H J JkL kL
= ′  and J t y wkL k L= −∂ ∂( ) , respectively

where, I is the identity matrix of the function; H, the Hesian
matrix of the function; J, the Jacobian matrix of the function; and
λ  is step length, (the parameter  for Levenberg- Marquardt
method).

After training, the network is tested by introducing the testing
input data sets. Experimental data are then compared with
simulated data. If the network predictions are in close
agreement with the experimental data, then network topology
is accepted. Else the training process is repeated with new
parameters.

RESULTS AND DISCUSSION
In this investigation, the ANN simulations are performed two
times, one for predicting  ethanol concentration and other for
cell mass concentration. In the first case, the neural network
employed has five input nodes corresponding to the five
fermenter variables, namely, pH, temperature, sugar
concentration, ethanol concentration at time (t � 1), and ethanol
concentration at time t and one output node corresponding to
the ethanol concentration at time (t + 1). Whereas for
predicting cell mass concentration, pH, temperature, sugar
concentration, biomass concentration at time t and (t � 1) as the
input nodes inputs and  cell mass concentration at time (t + 1) as
the output nodes are used for simulation purpose. Out of 502
experimental data, first 405 data sets are used to train the
network and the last 97 data are used for testing and validation
of the NN model. During training the network, SSE has been
kept at 0.001 and the frequency of progress displays (in epochs)
is set at 50 with maximum epochs of 1000 to train the network.

Neural network models corresponding to different numbers of
hidden layers (1 and 2 in each case) and number of neurons in
the hidden layers are tried to find the network architecture that
provides the least error. A neuron architecture with 2 hidden
layers containing 15 neurons and 16 neurons is found to be
optimum in both cases of ethanol and cell mass predictions.
The ethanol results produced in training and testing to assess
the ethanol concentration at any desired time interval-using
ANN are shown in Figure 2�Figure 5. There is very little
difference between the ethanol concentrations predicted by
ANN model and training and testing data, as observed in Figure 2�
Figure 4. A BP neural network is found to be very efficient in
predicting ethanol concentration in the range of data contained
in the learning set, that is, 405 data sets. The simulation results
show that introduction of two hidden layers improve the
forecasting performance of ANN compare to the use of single
hidden layer. The average SSE is observed to be reached the
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error goal of 0.001, when two hidden layers are used instead of
0.05 reached with only one hidden layer containing 16 neurons.
It is then decided to evaluate the network model using 97 testing
data sets. The results show that the predicted ethanol
concentrations of ANN results obtained are as close as with
training and testing data given to the network. Figure 5 shows
the percentage relative error between ANN predicted values
and the training/testing data sets. As it is observed that the
percentage relative error lies in the range � 1.649 to 1.9.  The
NN explored in the first case is employed as a module in the
second case for predicting cell mass concentration.

The  results  of  training  and  testing  conducted  on  502  data  sets
for  cell  mass  prediction  are  shown  in  Figure  6�Figure 9.

Figure 6, compares the ANN simulated value of cell mass
concentration with the training and testing data sets, whereas
Figure 7 and Figure 8 show the comparison between ANN
simulated output data and cell mass concentration data
obtained by experiments. The percentage relative error at each
sampling interval as shown in Figure 9 lies in the range of �
0.9926 to 1.9. The maximum error as 1.9 is observed at 118 data

Figure 2 Comparison between outputs of ANN predicted and training
and testing data of  ethanol concentration (g/l) as a function of time
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Figure 3 Comparison between ANN simulated and experimental
output data of ethanol concentration (g/l) as a function of time
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Figure 4 Comparison between ANN simulated and experimental data
of ethanol concentration (g/l)

Figure 6 Comparison between outputs of ANN predicted and training
and testing data of  cell mass concentration (g/l) as a function of time

Figure 7 Comparison between ANN simulated and experimental cell
mass concentration  (g/l) as a function of time
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Figure 5 Percentage relative error between ANN simulated and
training and testing output data of ethanol concentration (g/l) as a
function of time
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point. The results show that the performance index of cell mass
concentration obtained from ANN simulation is close to the
training and testing data sets.

CONCLUSION
In the present investigation, neural networks have been
designed and demonstrated to predict the state of batch
fermentations with grape juice extracted from grape waste by
taking into account the effect of pH, temperature and initial
sugar concentration as a function of time. A simple  propagation
network using the Levenberg-Marquardt for training the
network is found to be very effective to generalize and predict
the cell mass and ethanol concentration during batch
fermentation. The configuration of the back propagation neural
network that gives the best prediction is the one with two
hidden layers consisting of 15 neurons and 16 neurons in each
layer.  ANN predicted results are very close to the experimental
values. The average SSE is observed to be reached the error goal
of 0.001 and the maximum percentage relative errors are found
to be 1.9077 and 1.9 for ethanol and cell mass, respectively.
Therefore, the prediction capability of neural networks can be
utilized as a promising technique for modelling, estimating and
predicting bio-processes which are non-linear in nature and
whose dynamics are poorly known.
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