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Abstract

In the present investigation slipline �eld solutions for orthogonal machining are presented when the
plastically stressed region in the chip=tool contact length consists of both slipping (�6 k) and sticking
(�=k) zones. The interface friction in the slipping region is assumed to obey Coulomb’s law and the �elds
are analysed using the linear approximation to the above non-linear boundary value problem as suggested
by Dewhurst. The range of validity of the above slipline �elds is examined from the consideration of
overstressing of rigid vertices in the assumed rigid regions. Results are presented for variation of cutting
forces, cutting ratio, chip curl radius and contact length with variation in rake angle and interface friction
coe8cient. Solutions incorporating elastic e9ects are obtained by the method suggested by Childs. Results
from the theoretical analysis are compared with experimental values reported in literature.? 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

During metal machining the chip is subjected to high contact pressure=high traction conditions
at the chip=tool interface due to sliding friction. As a result the friction stress attains the limiting
value of yield stress k in shear over a portion of the plastically stressed contact region nearest
to the cutting edge [1]. Experimental studies using a split tool carried out by Childs et al.
[2], Barrow et al. [3], Kato et al. [4] and Buryta et al. [5] and photoelastic analysis of the
machining process carried out by Chandrasekhar et al. [6], Bagchi et al. [7] and Usui and
Takeyama [8] suggest that two zones exist on the face of the tool and these exhibit di9erent
frictional characteristics. In the zone adjacent to the tool tip, the high normal pressure results
in the real area of contact between the rake face and the chip being equal to the apparent area
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Nomenclature

�; �; �1; �;  slipline �eld angles
	 friction angle as de�ned in Eq. (9)
pE; pA hydrostatic pressures at E and A in the slipline �elds
t1; t0 deformed chipthickness and undeformed chipthickness
ls, le, lt sticking, elastic and natural contact length
 rake angle
k yield stress in shear
�n; � normal stress and shear stress at the chiptool interface
� coe8cient of friction in the zone of slipping contact
Fc; Ft tangential cutting force and thrust force

of contact. Under these conditions the frictional stress is independent of the normal stress �n
and is equal to the yield stress k in shear of the chip material. In this region of “sticking”
friction, the classical Coulomb friction law fails. At the end of this zone the normal force
on the rake face reduces to a value at which the real area of contact becomes less than the
apparent. In this zone of “slipping=sliding” contact, the friction stress � becomes less than k,
�n and � progressively decrease and �nally becomes zero at the point at which the chip leaves
the tool. It has been suggested that in this zone of slipping contact, Coulomb friction law holds
(Worthington [9], Worthington and Redford [10], Wright and Thangaraj [11], Childs and Mahdi
[2] and Hsu [12]).

Thus the friction law governing the chipKow in the above two zones are expressed by two
independent equations which are written as,

�= ��n; ��n 6 k; (1a)
�= k; ��n ¿ k; (1b)

where, � is the Coulomb coe8cient of friction in the slipping region.
Even though the length of plastic contact consists of both sticking (�=k) and slipping (�6 k)

regions, due consideration to this observation has not been accorded in the theoretical analysis
of the machining process. In the slipline �eld solutions proposed by Lee and Sha9er [13] and
Kudo [14] the interface friction was assumed to be governed either by Eqs. (1a) or (1b) so that
the friction stress over the whole contact region was every where less than k (full slipping) or
equal to k (full sticking). Similar assumptions about the nature of contact was also made in the
slipline �eld analysis carried out by Dewhurst [15], Childs [16] and Sih and Ramalingam [17]
though the chip formation in their study was assumed to take place under condition of constant
friction stress (�=mk).

In the present analysis slipline �eld solutions for the machining process are presented as-
suming sticking and slipping contact in the plastically stressed region at the chip=tool interface.
Coulomb friction is assumed in the zone of slipping contact and the chip is assumed to emerge
from the deforming zone with an angular velocity (chip curl). With this friction law, however,
the relation between the angular range of �- and �-lines bordering the slipping region becomes
non-linear. Using linear approximation to this non-linear relation, the solutions are constructed
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by the matrix methods developed by Dewhurst [18] and Dewhurst and Collins [19]. It is shown
that sticking begins when the coe8cient of friction exceeds a certain minimum value. Length
of sticking and slipping regions and the interface stress distribution are computed as a function
of the coe8cient of friction for di9erent tool rake angles. Results for cutting and thrust forces,
chip curvature and cutting ratio are also presented. The computed values are also compared
with some experimental results available in literature.

Though the analysis presented here assumes Coulomb friction in the zone of slipping contact,
the method proposed is quite general in nature and is easily extended to deal with any other
linear=non-linear friction boundary condition at the chip=tool interface.

2. Slipline �eld solutions

Two slipline �elds which cover the complete range of friction conditions encountered in metal
machining are shown in Figs. 1 and 2 along with their associated hodographs.

Solution I (Fig. 1) is the modi�ed Dewhurst �eld [15] when Coulomb friction obtains on
the interface CE. The solution applies when the friction stress � on the chip=tool boundary no
where equals the yield stress k in shear (�6 k). This condition is satis�ed when for any given
value of the coe8cient of friction �, the angular range � of the �-line ED is less than the
limiting value �L given by the equation

�L = (1=� − pE − 2	E)=4; (2)

where, pE is the hydrostatic pressure at E and 	E is the angle at which slipline ED meets the
tool face.

Fig. 1. (a) Slipline �eld of Solution I; (b) hodograph for slipline �eld in Fig. 1(a).
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Fig. 2. (a) Slipline �eld of Solution II; (b) hodograph for slipline �eld in Fig. 2(a); (c) angular coordinates of
slipline �elds.

It is seen that in order for the slipline �eld to satisfy the mixed stress and velocity boundary
conditions, slipline ED(�1) must satisfy the matrix equation (refer to the appendix),

(I − CL�1	cQ �1Q�1 CL�	E)�1 = (�=!)CL�1	cP�1 Lc; (3)

where CL is the Coulomb operator [18], P and Q are standard matrix operators [19], � is the
velocity discontinuity across the primary shear line CBA and ! is the angular velocity with
which the chip rotates on leaving the deformation zone (Fig. 1(b)).

When the angular range of the �-line ED attains the limiting value �L given by Eq. (1),
both sticking and slipping regions may be present in the chip=tool contact length. The slipline
�eld that satis�es this requirement is shown in Fig. 2 (solution II). EDC and CGF in the above
�gure de�ne the slipping and sticking zones, respectively, with � 6 k on EC and � = k on
CF, while FGI is the singular �eld constructed about point F. Referring to the corresponding
hodograph shown in Fig. 2(b), it is demonstrated that all velocity boundary conditions are also
satis�ed.
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The matrix equation de�ning the base slipline BH (�3) in this case is written as

(I − (UZ + VX ))�3 = (�=!)(UY + VW ) Lc; (4)

where I is the unit matrix, Lc is the column vector representing a unit circle and U;V;W; X; Y; Z
are resultant matrix operators as derived in the appendix.

It may be noticed that both these �elds have four degrees of freedom given by the �eld
angles �,  , �=� and the hydrostatic pressure pE. Since there are only three stress boundary
conditions to be satis�ed for a force free chip, both these �elds are non-unique in nature.

It may be seen that the angular coordinates of any point P on the slipping region EC
(Fig. 2(c)) are governed by the equation

�(pE=k + 2(�+ �) + sin 2(	E + �− �))− cos 2(	E + �− �)) = 0: (5)

Following Dewhurst [18] the above non-linear relation was approximated by a linear relation
given by

�=m0�: (6)

For low values of �, an approximate expression for m0 was presented by Dewhurst [18] based
on small angle approximation. However, as reported by Murakami [20] this gives rise to large
error when � exceeds 0.3.

In the present study m0 was calculated using the method of linear regression analysis. For
points with known angular coordinates � on ED, the corresponding � values were calculated
by solution to Eq. (5) by Newton-Raphson method. These data were then used to calculate m0
from the equation

m0 =
j∑

i=1

�2i

/ j∑
i=1

�i�i; (7)

where �i, �i are the coordinates of any arbitrary point on ED. Calculation was carried out by
taking ten points on ED (j = 10).

If the interface friction is assumed to be governed either by the linear friction law �=mk or
by the adhesion friction law given by the equation,

�= k(1− e−(��n=k)); (8)

the friction stress no where equals the yield stress k in shear (� 6 k) in the chip=tool contact
region. For these cases, therefore, slipline �eld shown in (Fig. 1(a)) satis�es the necessary
boundary requirements on stress and velocity and the base slipline can be computed by solution
to Eq. (3). The linear coe8cient m0 (Eq. (6)) for constructing the Coulomb operator CL,
however, is to be suitably calculated consistent with the assumed friction condition. For the
linear friction law, m0 =1. For the adhesion friction law, the value of m0 should be determined
with the help of Eqs. (8) and (7).

3. Computation of slipline �elds

The slipline �elds shown in Figs. 1 and 2 are of indirect type and these were analysed by
solutions to the matrix Eqs. (3) and (4). A FORTRAN program developed for the purpose
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required input of friction coe8cient �, hydrostatic pressure pE at E and an initial guess for the
three �eld angles �,  and �=�. The program �rst evaluated 	E by solution to the equation

�(pE=k + sin 2	E)− cos 2	E = 0 (9)

and then determined the linear coe8cient m0 (Eq. (7)). These data were used to generate
Coulomb and basic matrix operators and determine the column vector for the base slipline. Other
slipline and hodograph curves were now calculated and the forces F1, F2 and moment M on the
chip boundary ABED evaluated. The �eld angles were calculated from the requirement of force
free condition of the chip. An algorithm developed by Powell [21] for solution to non-linear
algebraic equations was employed for the purpose and free chip condition was assumed to be
satis�ed when the values of the �eld angles �;  ; �=� satis�ed the inequality

(F1=kt0)2 + (F2=kt0)2 + (M=kt20)
2 6 10−10: (10)

In all calculations, the scale factor �=! was set equal to 1. The programme also incorporated
the following checks to test the accuracy of calculations:

(i) Flatness check: Point C on slipline curve DC (Fig. 1 (a)) and points C, F on slipline curves
DC, GF (Fig. 2(a)), respectively, must lie on the tool face. Similarly point e on hodograph
curve de must lie on line oc′ (Fig. 1(b)) or line oc (Fig. 2(b)).

(ii) Mass Kux check: The mass entering into the deformation region should be equal to mass
leaving the same. This is written as

t1 · (oe + oa)=2 = to · ox: (11)

(iii) Traction check: The horizontal and vertical forces calculated from the primary shear line
CBA (Fig. 1(a)) or FBA (Fig. 2(a)) should be equal to those calculated from the sliplines
bordering the plastically stressed region (EB and CB for solution I and ED, CD and CG, FG
for solution II).

In all calculations the above three requirements were found to be satis�ed to 5 signi�cant
�gures.

In the present study it was assumed that �= k on CF (	E + � − �1 = 0, Fig. 2(a)). Due to
the linear approximation, �=m0�, however it was not found to be so and � di9ered marginally
from k. For �=0:6, � was equal to 0.995k and for �=0:8, � was equal to 0.998k. Attempt was
also made to analyse the �elds by the method proposed by Murakami [20] by �tting a cubic
polynomial between the angular range of �- and �-lines given by the equation

�=m1�+m2�2 +m3�3; (12)

where m1, m2 and m3 were calculated by Langrange interpolation. But with this procedure the
solution did not converge for a value of � as low as 0.4 even with matrices of size 20 × 20.
This was because coe8cients in Eq. (12) generally diverge and m2, m3 become very large as
� increases. This method of analysis was therefore not pursued further. It is also likely that no
signi�cant improvement will result when � has a value exactly equal to k on CF (Fig. 2(a)).
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4. Range of validity

Not all solutions given by the present slipline �elds are necessarily valid. For this to be so
the plastic stress �eld must be extended to the chip and the workpiece to demonstrate that the
yield criterion is not violated in the rigid regions. This requires that the hydrostatic pressure
pA at A should be such that the rigid vertices at A are not overstressed. Following Hill [22]
the range of permissible values of pA for which valid solutions are obtained is written as

pA=k 6 1− 2 cos(�1 − $=4); �1 6 3$=4;

pA=k 6 1 + 2(�1 − 3$=4); �1 ¿ 3$=4; (13)

and

1 + 2(�2 − $=4)¿ pA=k ¿ −1 + 2 cos(�2 − =4); �2 ¿ $=4:

In some solutions, point f2 in the hodograph diagram (Fig. 2(b)) was found to be below the
line ox. This occurred for large values of � (¿ 0:6) and for tool rake angles  less than 5◦.
The cutting ratio and the cutting forces for these solutions were also found to be large. It is
likely that formation of built up edge takes place under these conditions.

5. Results and discussion

For any given value of � and hydrostatic pressure pE, as the angular range � of slipline
ED increases, �eld angles � and  also increase (Fig. 1(a)). At low values of � (¡ 0:55) the
rigid vertices at A are overstressed before � attains the limiting value �L (Eq. (2)). Under these
conditions the machining behavior is governed by solution I only. The range of validity for
� = 0:25 is given in Fig. 3(a), de�ned in terms of the possible range of  , the angle of the
centre fan. Referring to the above �gure, it may be seen that the upper limit on  for this
case is given by the curve UL, where the �eld angles produce overstressing of vertex angle �2
(Fig. 1(a)). For  greater than 12◦, the lower limit on  is given by the curve LL which refers
to the overstressing of vertex angle �1. It is also seen that for  less than 12◦, Lee and Sha9er’s
solution [13] de�nes the lower limit. Thus it appears that for the given value of � chip will
always leave the deformation zone with a curvature when  exceeds 12◦. For still lower values
of �, curve LL shifts to the left and eventually meets the abscissa at  equal to 0◦ for �=0:0.
For higher values of � the above curve shifts to the right. It was also observed that for �¿ 0:4,
vertex angle �1 is never overstressed for the range of rake angles examined.

Solutions with slipping and sticking zones in the chip=tool contact length are predicted only
when �¿ 0:55. The permissible range of values of  for such a case for �= 0:6 is shown in
Fig. 3(b). Referring to the above �gure, it may be seen that the lower limit for all rake angles
in this case is provided by Lee and Sha9er’s solution [13] for which  = 0. The upper limit
on  for slipping contact only is indicated by the curve SL in the above �gure for which �
has a value equal to �L in solution I (Fig. 1(a)). This curve is nearly Kat as for any given
value of � the �eld angles are independent of the tool rake angle. This observation was also
reported earlier by Dewhurst [15]. When the contact length involves both slipping and sticking
zones the maximum permissible value of  is restricted by overstressing of vertex angle �2 in
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Fig. 3. (a) Range of validity of slipline �eld in Fig. 1(a); (b) range of validity of slipline �eld Fig. 2(a).

solution II (Fig. 2(a)). This is indicated by the curve UL in Fig. 3(b). It may also be seen that
the curves UL and SL meet at point Q corresponding to  equal to 2◦. Thus for machining with
tools having rake angle less than the above value, the interface will be governed by slipping
friction only.

The variation of machining parameters with rake angle as obtained from the present analysis
are shown in Figs. 4–8 for � values equal to 0.0, 0.4, 0.6 and 0.8. For each value of the rake
angle, the range of possible solutions lie within the limits as discussed with reference to Fig. 3.
Referring to the above �gures, it may be seen that the rake angle and the interface friction are
the two most important variables in metal machining that inKuence the cutting forces, cutting
ratio and chip curvature. The cutting and thrust forces and cutting ratio are found to decrease
with increase in  and with decrease in the value of � which is in agreement with experimental
observations. It may also be seen that chip curvature (t0=Rm) decreases as � value increases
indicating that the chip will have a tendency to stream rather than curl as rake friction increases
(Fig. 6). The computed values of the cutting ratio are compared with the experimental results



Fig. 4. Variation of non-dimensionaized cutting force with  and �.

of Eggleston et al. [23] in Fig. 7. Referring to this �gure, it may be seen that there is excellent
agreement between theory and experiment for all rake angles with the experimental points
mostly lying within the solution range for �= 0:4 and 0:8.
The variation of non-dimensional contact length lt=t0, the non-dimensional sticking length

ls=to and sticking ratio ls=lt with rake angle is shown in Fig. 8 where, it is also compared with
the experimental results reported in references [4,6,23–25]. For =5◦; 10◦ and 15◦, most of the
experimental points are found to lie within the solution range for � = 0:4 and 0.8. At higher
rake angles, however, the agreement between theory and experiment is not found to be so good.
Better agreement may be obtained when a higher value of � is assumed for these cases. It may
also be seen with reference to Fig. 8 that though lt=t0 and ls=t0 vary, the sticking ratio ls=lt is
virtually una9ected by variation in rake angle.



Fig. 5. Variation of non-dimensionalized thrust force with  and �.

It is observed that the predicted variations in the machining parameters depend critically upon
the choice of the tool rake angle (Figs. 4–8). The range of possible solutions decrease as the
rake angle increases.

6. Solutions with elastic contact

Contact stress distribution on the tool rake face obtained from photoelastic analysis [6–8] or
using a split tool [2–5] suggest that in metal machining there usually exists an extensive region
of elastic contact beyond the zone of plastic contact the forces acting across which contribute
signi�cantly to the cutting and thrust forces. To incorporate this elastic e9ect into the present
analysis an elastic contact length beyond the length of plastic contact was assumed as suggested
by Childs [16]. In the plastic zone the normal and shear stresses were assumed to be governed
by the proposed slipline �elds. In the length of elastic contact the normal pressure was assumed



Fig. 6. Variation of curvature of the machined chip with  and �.

to be distributed either exponentially or parabollically thus giving rise to a resultant force and
a moment. The �eld angles were determined in the same way as for free chip formation from
equilibrium consideration such that the force and moment due to the slipline curves bordering
the chip were equal and opposite to those generated in the elastic contact length. The solution
procedure is discussed in detail in Ref. [26]. The range of validity of these solutions were again
determined from the consideration that the vertex angles �1 and �2 are not overstressed.

Incorporation of an elastic contact length introduces an additional variable to the slipline
�elds over and above the existing four (�;  ; �=�; pE) as discussed in Section 2. Since there are
only three stress boundary conditions to be satis�ed (F1 = F2 =M = 0) the �elds in this case
are also non-unique.

Incorporation of elastic e9ects were found to extend the solution range from the proposed
�elds and this is in agreement with the observations made earlier by Childs [16]. Thus, the
experimental points for tool=chip contact length for higher rake angles which were outside the



Fig. 7. Variation of the cutting ratio with  and �.

solution range in Fig. 8 considering plastic contact only were now found to be within the
solution range when elastic and plastic contact was considered.

A typical plot of stress distribution with elastic and plastic contact at chip/tool interface is
shown in Fig. 9. The distribution is for the limiting situation where for the given rake angle
 and friction coe8cient � the �eld angles produce overstressing of the vertex angle �2. The
normal stress �n within the elastic zone in the above �gure is assumed to be governed by the
exponential relation

�n = �0(1− enl=le)=(1− en); (14)

where �0 is the normal pressure on the tool at the elastic=plastic transition point, le is the
length of elastic contact, l is the distance of the point under consideration from the point of
chip separation (l¡le) and n is constant. For the above plot le was assumed equal to the
length of plastic contact and the value of n was set equal to 1. With these values the computed



Fig. 8. Variation of lt=t0, ls=t0 and ls=lt with  and �.

elastic forces were within 30–40% of the total cutting force for � = 0:8 and the length of
plastic contact was 50% of the natural contact length which is consistent with experimental
observations [6].

Referring to the above �gure it may be seen that for � = 0:4 the normal pressure increases
monotonically in the length of plastic contact. The same trend is also observed for � = 0:6
and 0.8, though the rise in pressure is not as steep in the zone of slipping contact as it is in
the sticking contact area. It may also be seen that the extent of sticking contact is very much
inKuenced by the value of �. At �= 0:6, the length of sticking contact forms only 25% of the
length of total plastic contact, which increases to 70% for � = 0:8. Even within the slipping
contact zone � does not di9er much from k, the least value being 0:94k for �=0:8. This may be
the reason why the distribution of � in the plastic contact area from experimental measurements
appears to be nearly Kat.

The contact stress distribution shown in Fig. 9 refers to the upper limiting values for the
cutting conditions indicated ( = 300; � = 0:4; 0:6 and 0:8). The lower limit to the stress
distribution are again provided by Lee and Sha9er’s solution [13]. For this case both



Fig. 9. Variation of �n and � at the chip-tool interface.

normal and shear stresses along the rake face are constant and the elastic contact length is
zero [26]. Depending on the condition of cutting, the contact stresses are expected to lie within
these limits.

7. Conclusions

In the present analysis slipline �eld solutions for the orthogonal machining process are pre-
sented assuming sticking and slipping contact in the plastically stressed region at the chip=tool
interface. Interface friction within the zone of slipping contact is assumed to obey Coulomb’s
law and the solutions are constructed by linear approximation to this non-linear boundary value
problem as suggested by Dewhurst. Limits of validity of these solutions have been examined
by applying Hill’s overstressing criterion.

It is seen that for a given value of friction coe8cient �6 0:55 the interface friction results in
slipping contact only. When � exceeds the above value, sticking and slipping zones are predicted
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in the length of plastic contact. Solutions with slipping contact can be obtained by analysis of
the modi�ed Dewhurst �eld shown in Fig. 1. The slipline �eld shown in Fig. 2 applies when the
plastically stressed region in the interface consists of both slipping and sticking zones. Solutions
incorporating elastic e9ects have also been constructed by introducing a length of elastic contact
beyond the plastically stressed region as suggested by Childs.

Computed values of machining parameters such as cutting force, thrust force, cutting ratio,
chip curvature and contact length are presented for rake angle values between −5◦ and 30◦ and
for � values between 0 and 0.8. For any given value of rake angle and friction coe8cient �,
the solutions are found to lie within the limits imposed by the overstressing of assumed rigid
regions in the chip and the workpiece. Tool rake angle and interface friction are seen to have
most signi�cant inKuence on machining parameters. The predicted variations in the machining
parameters depend critically upon the choice of the tool rake angle. The range of possible
solutions decrease as rake angle increases.

Computed values of cutting ratio and contact length are found to show excellent agreement
with experimental results reported in literature.
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Appendix

Matrix Eq. (3) for solution I is derived as follows:
Referring to Fig. 1(a), let the column vector for the base slipline ED be denoted by �1.

Hence,

CD = CL�	E�1; (A.1)

where CL is the Coulomb operator as de�ned in [18]. Thus,

BD =Q�1 CL�	E�1: (A.2)

Referring now to the hodograph diagram shown in Fig. 1(b), because of the rigid body rotation
of the chip, the geometrical similarity of sliplines ABDE and the corresponding hodograph
curves may be expressed as

bd =!Q�1 CL�	E�1 (A.3)

and

ed =!�1; (A.4)

where ! is the angular velocity of chip curl.
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The material on entering the deformation zone su9ers a velocity discontinuity of magnitude
� as shown in Fig. 1(b). Thus circular arc bc is written as

bc = � Lc: (A.5)

The curve c′d in the hodograph is calculated from bc and bd (superposition principle) using
the relation

c′d = P�1 � Lc+Q �1!Q�1 CL�	E�1: (A.6)

Also

ed = CL�1	Ec
′d (A.7)

Using Eqs. (A.4), (A.6) and (A.7) the matrix equation determining �1 is �nally written as

(I − CL�1	cQ �1Q�1 CL�	E)�1 = (�=!)CL�1	cP�1 Lc; (3)

where, I is the unit matrix, Lc is a column vector representing unit circle and P;Q are standard
matrix operators as de�ned in [19].

The matrix Eq. (4) for solution II may be derived in the following manner:
Let the sliplines ED, DH and BH in Fig. 2(a) be denoted by the column vectors �1, �2 and

�3, respectively. Hence,

CD = CL�	E�1 and DC = R�1CL�	E�1: (A.8)

Curves GH and CG can be de�ned from curves DC and DH as
GH = P�1�DC+Q��1�2;

CG = P∗
�1�2 +Q∗

�1DC:
(A.9)

Since friction stress � is constant on CF, FG is calculated from CG using the rough boundary
operator. This relation is written as

FG =G�	cCG: (A.10)

FGI is a singular �eld. Hence,

GI =Q∗
�FG: (A.11)

BH (�3) is �nally derived from slipline curves GH and GI using the relation,

�3 = P �1GI +Q�1 GH: (A.12)

Substituting Eqs. (A.8), (A.9), (A.10) and (A.11) in equation (A.12), �3 is �nally expressed
in terms of �1 and �2. This is written as

�3 =U�2 + V�1; (A.13)

where U and V are resultant matrix operators de�ned as

U = P �1Q
∗
�G�	cP

∗
�1 +Q�1 Q��1

and

V = P �1Q
∗
�G�	cQ

∗
�R�1CL�	E +Q�1 P�1�R�1CL�	E : (A.14)
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Referring now to Fig. 2(b), rigid body rotation of the chip requires that the hodograph curves
bh, dh and ed are geometrically similar to their slipline images. Thus,

ed =!�1; dh =!�2 and bh =!�3: (A.15)

Further, bf1 is a circular arc of radius �, the velocity discontinuity across the primary shear line
FIBA. Therefore, bf1 is written as

bf1 = � Lc: (A.16)

Curve f2h can be de�ned from curves bh and bf1 as

f2h = P* � Lc+Q *!�3; (A.17)

where

*= �+ �:

Also gh and gc are calculated from f2h. These relations are written as

gh = S�f2h and gc = R�G�	c f2h (A.18)

Curves cd and dh can be de�ned from curves gc and gh,

dh =!�2 = P��1gc +Q�1�gh

cd =Q∗
�gc + P∗

�gh
(A.19)

Further, ed is calculated from cd using the Coulomb operator. Thus,

ed =!�1 = CL�1	ccd (A.20)

Substituting Eqs. (A.16)–(A.18) in Eqs. (A.19) and (A.20), �1 and �2 are �nally expressed in
terms of �3. These relations are written as

�1 = X�3 + �=!W Lc and �2 = Z�3 + �=!Y Lc; (A.21)

where, W , X , Y and Z are operators given by the relations,

W =CL�1	cQ
∗
�R�G�	EP* +CL�1	cP

∗
�S�P* ;

X =CL�1	cQ
∗
�R�G�	cQ * +CL�1	cP

∗
�S�Q *;

Y = P��1R�G�	cP* +Q�1�S�Q �;

Z = P��1R�G�	cQ � +Q�1�S�Q *:

(A.22)

Substituting Eq. (A.21) in Eq. (A.13) the matrix equation for �3 is �nally written as

(I − (UZ + VX ))�3 = �=!(UY + VW ) Lc: (4)
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