
2019 International Conference on Vision Towards Emerging Trends in Communication and Networking
(ViTECoN)

Dynamic Hard Timeout based Flow Table
Management in Openflow enabled SDN

Abinas Panda
Computer Science and Engineering

National Institute of Technology
Rourkela,India

abinash.panda1987@gmail.com

Siddharth Shankar Samal
Computer Science and Engineering

National Institute of Technology
Rourkela,India

sidhuking07@gmail.com

Prof Ashok Kumar Turuk
Computer Science and Engineering

National Institute of Technology
Rourkela,India

akturuk@nitrkl.ac.in

Aliva Panda
Computer Science and Engineering

Center of Advanced Post Graduate Studies,BPUT
Rourkela, India

aliva.panda14@gmail.com

Vummadi Chetty Venkatesh
Computer Science and Engineering

National Institute of Technology
Rourkela,India

vummadichettyvenkatesh@gmail.com

Abstract—Software Defined Networking is the innovation in
the network which allows us to manage the network dynami-
cally in an efficient way. Ternary Content Addressable Memory
(TCAM) is being used by the OpenFlow switches because it is
faster look-up. However, it is very costly, and also the number
of flow entries accommodated in it is less due to its limited size.
So to take full advantage of the TCAM, we need to maximize
the flow table utilization. To improve the TCAM allocation, This
paper emphasizes managing the Hard Timeout of the flow table
entries. We are proposing a Dynamic way to allocate the flow
entry timeout so that the flow table can be used optimally by
assigning different dynamic timeout considering predictable and
unpredictable flows. The results show that Dynamically allotted
hard timeout along with LRU as the eviction method performs
better than the Statically allotted hard timeout along with LRU.

Index Terms—SDN, Hard Timeout, TCAM, OpenFlow

I. INTRODUCTION

A. Software Defined Networking

Software Defined Networks (SDN) [1] adopts an innovative
network architecture that aims to directly program the network
computing. SDN gives us provision to manage network be-
havior and control in a dynamic way which was not possible
in case of traditional networks. SDN has separate data plane
and control plane as in figure 1. It’s control plane is in the
controller while to interact with switches we have OpenFlow
[2] protocol to take care of it. SDN controller stores the flow
entries that are created in the SDN switches and it forwards
traffic based on the flow entries made in it. So it basically
decouples the data plane and control plane.

Fig. 1. SDN Architecture [3]

B. OpenFlow

OpenFlow is the standard protocol for SDN that is being
used in the controllers of SDN. The controller can communi-
cate with the switches via the OpenFlow Protocol. It can add
the flow policies in the switch and set up paths. The controller
can manage the different switches from different vendors
using a single and open protocol i.e. OpenFlow. It decides
the path using various characteristics such as the latency,
minimum number of hops and others. It separates the data

978-1-5386-9353-7/19/$31.00 ©2019 IEEE

plane and control plane that helps us in having a programmable
network. OpenFlow is no doubt a centralized network but it
can improvise to adapt the fluctuating requirements of the
network.

In OpenFlow switch specification 1.3.0, we are concerned
over the flow table overflow problem. Since the TCAM
(Ternary content addressable memory) [4] is very costly and
has certain limitations on hardware to have very small number
of policies saved, the flow table usually suffers the flow table
overflow problem.

C. TCAM

Ternary content-addressable memory (TCAM) is a CAM
that has don’t care condition in addition to the 1 or 0 state.
This feature helps us to search look-up in the table with
O(1) time complexity. For achieving the O(1) time complexity,
the intense and costly hardware of TCAM comes into play.
OpenFlow flow tables use TCAM for storing the flow entry
rules. TCAM can fast up different processes that require flow
table. The fact that it is very costly leads us to limited TCAM
size. Normally the TCAM sizes are able to hold around 2k
rules.

D. Overflow

Since the OpenFlow switch stores the flow entry in a flow
table which has a limited capacity which is implemented in
TCAM, the table gets full when number of different flows
increases.

So when we get a new request and the flow comes for
installation, instead of installing we first see if the rule is in
the table or not. If it is not in the table then it is considered
as a miss and another packet_in happens and one of the rules
from the flow table is evicted so as to make space for the
incoming packet_in flow.

E. Timeout

Every flow rule while getting installed in the Flow Table is
assigned a timeout value. It is the time after which the flow
is to be removed from the flow table if no packets of the flow
is moving through.

Timeout can help us improve the flow table overflow
problem as there must be vacant space for the incoming flows
to install their rules. Each flow entry may have an idle timeout
and or a hard timeout associated with it. Timeouts are of two
types:

• Idle Timeout: The corresponding flow entry will be
deleted after this time if no packets has been matched
by the flow.

• Hard Timeout: The corresponding flow entry will be
deleted after this time regardless of whether the packets
are being matched or not.

Different controller and their idle and hard timeout:

Controller

Idle
Timeout
(in
seconds)

Hard
Timeout
(in
seconds)

OpenDaylight 0 0
Floodlight 5 0
Pox 10 30
Ryu 0 0
Beacon 5 0

F. Motivation

The timeout is a very sensitive parameter for the flow rules
in the flow table. If we set low timeout values, the flow rules
will be deleted soon even if the flows are still active. If we
set the timeout high, there’s a great chance that the rule will
block the space for many incoming new rules. All the flow
table management strategies that are currently being used
normally use a fixed idle and hard timeout value [5]. They fix
the value of timeout irrespective of the volume and duration
of the flow. That means the flows are going to reside in the
TCAM memory until the timeout period is over. This will be a
overhead as their performance is acceptable if the Flow Table
memory is quite sufficient. But in SDN where the Flow Tables
are very limited, these methods fail to give good performance.

G. Objective

The main objective here is to improve the TCAM occupancy
by utilizing proper timeouts for different flows in a dynamic
way. The parameters are:

• Reduce the number of capacity misses
• Improve the hit ratio
• Flow Table Occupancy

These parameters will help us improve the TCAM occupancy
and since the timeout values are given dynamically which
means that we will have better vacancy in the Flow Table.

H. Organization of the paper

The remainder of this paper is structured as follows:Section
II describes the related work due to timeout based eviction in
SDN, in Section III we have the system design and then in
Section IV we have the proposed work which is later evaluated
using Ryu and OpenVSwich SDN platform in Section V.
finally section VI concludes the paper.

II. RELATED WORK

There has been lot of researches for optimizing of flow
table in SDN due to its limited size storage in TCAM and
cost.This optimization is achieved through various ways like
compressed flow size and highly efficient data structures,
timeout managements and some of use the factors that depend
upon the characteristics and type of flow.

In [6] author optimizing the flow table by assign a suitable
timeout based on flow charastetritics such as inter-arrival of
packet by adding a cache module in controller and dynamically
adjust the timeout value by seeing the current load in the SDN
controller.

He has later proposed another way to tackle this problem
by implementing a method called TimeoutX [5] that combines
traffic characteristics, flow types and Flow table utilization
ratio to decide the timeout of each entry.

In [7] author achieve scalability by considering fine grain
policy and maximize the flow table utilization while optimiz-
ing the hard timeout value according to network condition. In
[8] have developed a model which divides the flows table into
multiple flow table as sub-flow table and further divide based
on different field layer of the flow attribute.

In [9], they have proposed an efficient flow table man-
agement proposition through intelligent autonomous eviction
mechanism .Instead of relying entirely on the expiry period
alone of a flow entry, author propose and efficient data
structure as multiple bloom filter(MBF) to decide the flow
entry removal

In [8] proposed an algorithm which is to predict the number
new flows and estimate the number remaining number of flows
using Weibull distribution.Here by reducing the number of
flow setup request made to controller .To achieve scalability
they dynamically assign the timeout so as to have enough
memory to store new flow entries.

While all these research have been better with time, there’s
still a scope for improvement. We aim to improve those
methods using dynamic allocation for timeouts.

III. SYSTEM DESIGN

A. Flow and Rules in SDN

SDN is a rule based system for forwarding of packet, where
rule means a unique characteristics of a flow ,which give how
to process a packet in the network.Whenever a packet arrive to
the network through openflow switch it check for any previous
matching flow associated with packet is present or not, if yes
process the packet accordingly or else install a new flow rule in
the switch memory directed from controller through a packet-
in event and packet-out event. Here, we have taken flow as
five attribute such as IP source, IP destination, source port,
destination port and protocol to define a flow which make
size of rule is 256 bit. A flow table consists of flow entries.

Match Fields Priority Counters Instructions Timeouts Cookie

These are the main components of a flow entry in a flow
table, where match fields are the fields which selects the flow
entry matching with these match fields in the TCAM. Priority
is the precedence at which the flow entry is being matched and
counters are incremented when the match fields are matched.
There is instruction set to modify any action for that flow entry.
Timeout is given to the flow entry while installing the rule and
it’s the time after which the flow entry is to be removed from
the flow table. Cookies are there to get insights of the flow
and it’s value is set by the controller.

B. Notation

r
Average inter-arrival time of last N
packets

t Timeout value
tmax Maximum Timeout value

tttcam
Threshold value for TCAM occu-
pancy after which eviction starts

C. Idle Timeout Based Eviction

Eviction will be done once the TCAM occupancy reaches
90%. The eviction will be done according to the following
criteria. If there are flows having the timeout values as
Max idle Timeout, then among them we will evict the least
recently used, i.e., LRU.

IV. PROPOSED METHOD

A. Problem Formulation

Generally, we have two different type of flows. It can be
predictable and unpredictable type of flows. Predictable flows
are the normal flows which reside for long time. It is the
traffic from deterministic network services and periodic in
nature while unpredictable flows are spontaneous in nature
and are not periodic. We should keep the unpredictable flow
rules for less time in the TCAM while we should increase the
availability for the predictable flows in the TCAM.

• Hit ratio: The hit ratio is defined as such, let the number
of packets that go through the switches using the flow
rules already present in the flow table is c and the number
of packets that undergo PACKET_IN condition as it could
not match any existing flow rules in the flow table be pc
then we define:

HitRatio =
c

c+ pc

• Capacity Miss Rate: First of all, capacity miss is the flow
table miss that is caused by the filling of the flow table
and not having enough storage to accommodate the new
incoming flow entry. The miss rate is the ratio of the
packets that miss the flow table due to capacity miss (cm)
upon the total number of miss (tm).

CapacityMissRate =
cm

tm
∗ 100

• Flow table occupancy : Flow table occupancy is defined
as the percentage of flow table that are occupied by the
existing flow rule entries.

B. Dynamic Hard Timeout Allocation

We propose a dynamic method to allocate the timeout such
that we will have maximum utilization of the flow table. In this
method we will first look after the last N packets of the flow
to get their average inter-arrival time of the packets. Instead
of directly installing the packet, we wait for small amount of
time to let pass few packets and then we get r: rate of similar
flows arriving at a particular second.
Now for the first time when the flow is being installed, we

set the hard timeout value to 1s [10]. As we know that almost
75% of the flows are having hard timeout value less than 1s.
After that with each N packet arrival, we update the timeout
as such :

t = max{t ∗ 2r, tmax}

Maximum timeout here has been set as 11s [11] as we know
that nearly 90% of the flows have timeout value less than 11s.
At any given time if the TCAM occupancy overshoots 90%
then we start evicting entries with MaxTimeout values in a
LRU form.

C. Algorithm Description

We are proposing this algorithm for the dynamic hard
timeout allocation. The hard timeout deletes the flow entry
from the table after the given time irrespective of whether the
packets of the flow has been matched or not. The algorithm
for same follows as:

Algorithm 1 Dynamic Hard Timeout Allocation Algorithm
1: procedure DHTA(packets,N)
2: packet_counter ← 0
3: while packet_counter < N do
4: checkPacketArrival(N)

5: t← DEFAULT
6: r ← AvgInterArrivalT ime(packets,N)
7: if packet is matched then
8: if flow is unpredictable then
9: t← max{t ∗ 2r, tmax}

10: return t

Now after the timeout being set, there will be situations where
the TCAM occupancy will be more than tttcam which is 90

Algorithm 2 Eviction Condition
1: procedure EVICTION CONDITION(TCAMoccupancy)
2: if TCAMoccupancy > tttcam then
3: Select all flow entry having timeout t = tmax

4: Delete the flow entry based on LRU
5: return deleted_flow_entry

V. EVALUATION

A. System Setting

We have evaluated our proposed work compared to existing
work by taking Ryu as SDN controller and Mininet as network
emulator while taking OpenFlow protocol version 1.3 due
to its supported by maximum no of hardware device.We
have taken switch as software switch as OpenVswitch for
experimental evaluation and TCAM utilization by taking their
no of rule to be kept varying from 500 to 3000.We have used
two dataset name UNIV1 and UNIV2 for packet processing
and rule installation.We have extensively simulated for 10 min

[a] [b]

[c] [d]

[e] [f]

Fig. 2. (a), (f) Various hit ratio for different TCAM size such as
500,1000,1500,2000,2500,3000 with respect to different static eviction policy
and our proposed dynamic hard timeout allocation policy.

Fig. 3. Hit ratio vs Different policy for different TCAM size

and used the traffic pattern as in dataset. We have used static
timeout policy such as FIFO, LRU, RANDOM for comparison
of our work.

TCAM size 500,1000,1500,2000,2500,3000
Idle Timeout Default value of Controller
Switch OpenVSwitch [12]
Controller Ryu [13]
Simulator Mininet [14]
Dataset UNIV1, UNIV2 [15]
Eviction Type LRU
Simulation Time 10 min
Traffic
Distribution

Logarithmic,
Exponential

OpenFlow version 1.3

B. Parameter for Evaluation

The parameters for evaluation here are :
1) Hit Ratio: The hit ratio is the number of packets that

doesn’t need rule installation while it comes to the switch

Fig. 4. Flow table occupancy percentage vs simulation time

upon all the packets.

In figure(1) (a), (b), and (c) shows that the proposed algo-
rithm having TCAM sizes as 500,1000,1500 having the highest
hit ratio followed by FIFO, LRU and Random respectively. (d),
(e), and (f) shows that the proposed algorithm having TCAM
sizes as 2000, 2500, 3000 having the highest hit ratio followed
by Random, LRU and FIFO respectively.

Figure(2) shows Hit Ratio of different eviction policies
(Proposed algorithm, FIFO, LRU, Random Algorithms) for
different TCAM sizes(500, 1000, 1500, 2000, 2500, 3000)
which results that the proposed algorithm performs better
with increasing hit ratio between TCAM sizes 2500-3000
than other eviction algorithms.

2) Flow table occupancy: Flow table occupancy rate is
the number of rule or unique flow to be placed in TCAM
in openflow switch for forwarding of packet with respect to
total number of incoming flows.

Figure(3) shows the flow table occupancy percentage w.r.t
simulation time for Dynamic Hard Timeout Allocation policy
with LRU and Static Timeout with LRU which results that
the proposed DHTA with LRU having the more Flow Table
Occupancy rather than using Static Timeout with LRU all the
time.

3) Capacity miss rate: Capacity misses are the miss which
occurs due to no space for rule installation in the TCAM.
Since there is no space so we have to discard the flow until
we evict and make space for the rule to be installed.Capacity
miss rate is the percentage of miss with respect to total
number flows.

In figure(4) (a) shows that the proposed algorithm having
TCAM size as 500 having the lowest capacity miss ratio
followed by FIFO, Random, LRU respectively. (b) shows that
the proposed algorithm having TCAM size as 1000 having
the lowest capacity miss ratio followed by LRU, FIFO,
Random respectively. (c) shows that the proposed algorithm
having TCAM size as 1500 having the lowest capacity miss
ratio followed by Random, FIFO, LRU respectively. (d), (e),

[a] [b]

[c] [d]

[e] [f]

Fig. 5. (a), (f) Various capacity miss ratio for different TCAM size such as
500, 1000, 1500, 2000, 2500, 3000 with respect to different static eviction
policy and our proposed dynamic hard timeout allocation policy.

Fig. 6. Capacity miss rate vs Different policy for different TCAM size

and (f) shows that the proposed algorithm having TCAM
sizes as 2000, 2500, 3000 having the lowest capacity miss
ratio followed by Random, LRU, FIFO respectively.

Figure(5) shows Capacity miss ratio of different eviction
policies (Proposed algorithm, FIFO, LRU, Random Algo-
rithms) for different TCAM sizes (500, 1000, 1500, 2000,
2500, 3000) which results that the proposed algorithm per-
forms better having low capacity miss from TCAM size 2500
to TCAM size 3000.

VI. CONCLUSION AND FUTURE WORK

We can see the results show that the hard timeout allotted
by the DHTA along with the LRU eviction method works
well compared to other. This shows that we can optimize
the Flow Table utilization by having proper hard timeout
allotment. Having a dynamic timeout helps us analyze the
traffic properly and setting up the timeout unlike setting it

fixed.

In future, we can now explore similar dynamic approach for
finding out optimal combination of timeout values for both idle
and hard timeout, at which we can get the maximum benefit of
the TCAM without exhausting it. It should help us optimizing
the flow table even more.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] Z. Bojovic, “Implementing Software Defined Networking in Enterprise
Networks,” no. April, 2018.

[4] B. Agrawal and T. Sherwood, “Ternary cam power and delay model:
Extensions and uses,” IEEE transactions on very large scale integration
(VLSI) systems, vol. 16, no. 5, pp. 554–564, 2008.

[5] L. Zhang, S. Wang, S. Xu, R. Lin, and H. Yu, “TimeoutX: An adaptive
flow table management method in software defined networks,” 2015
IEEE Global Communications Conference, GLOBECOM 2015, 2015.

[6] H. Zhu, H. Fan, X. Luo, and Y. Jin, “Intelligent timeout master: Dynamic
timeout for sdn-based data centers,” in 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM). IEEE, 2015, pp.
734–737.

[7] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, “Star:
Preventing flow-table overflow in software-defined networks,” Computer
Networks, vol. 125, pp. 15–25, 2017.

[8] T. Kim, K. Lee, J. Lee, S. Park, Y. Hwa Kim, and B. Lee,
“A Dynamic Timeout Control Algorithm in Software Defined
Networks,” International Journal of Future Computer and
Communication, vol. 3, no. 5, pp. 331–336, 2014. [Online]. Available:
http://www.ijfcc.org/index.php?m=content&c=index&a=show&catid=49&id=611

[9] D. Wang, Q. Li, L. Wang, R. O. Sinnott, and Y. Jiang, “A hybrid-timeout
mechanism to handle rule dependencies in software defined networks,”
2017 IEEE Conference on Computer Communications Workshops, IN-
FOCOM WKSHPS 2017, pp. 241–246, 2017.

[10] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Joint Optimization
of Flow Table and Group Table for Default Paths in SDNs,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1837–1850, 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8424423/

[11] L. Wang, Q. Li, R. Sinnott, Y. Jiang, and J. Wu, “An intelligent
rule management scheme for Software Defined Networking,” Computer
Networks, vol. 144, pp. 77–88, 2018.

[12] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch.” in NSDI, vol. 15, 2015, pp. 117–130.

[13] A. A. L. Mantas, “Consistent and fault-tolerant sdn controller,” Ph.D.
dissertation, 2016.

[14] M. Team, “Mininet,” 2014.
[15] T. Benson and A. Akella, “Data set for imc 2010 data center measure-

ment,” 2010.

