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Abstract—Change detection deals with the problem of
detecting changes that have occurred between various multi-
temporal satellite images. This issue can be accomplished by
measuring the similarity among these images. Therefore, in
this paper, a very simple and effective change detection tech-
nique based on mutual information (MI), which is used as a
similarity measure tool between two variables in statistics, is
proposed. Herein, spatial neighborhood information around
each pixel is exploited to get the MI and corresponding
features. Further, difference feature vectors are created in
feature space that provides discriminant information for
change detection task. These difference feature vectors from
all bands of multispectral images are concatenated to get
the final feature vectors. Finally, features are classified by
applying hard and soft clustering techniques i.e. k-means
and fuzzy c-means, respectively and the results by both
the clustering algorithms are compared. Experiments are
conducted on two bitemporal satellite images, which confirm
the effectiveness of the proposed technique.

Index Terms—Change detection, fuzzy c-means clustering,
k-means clustering, Mutual information (MI).

I. INTRODUCTION

Remote sensing can be seen as the process of mon-
itoring or collecting data about the earth’s surface at
places that are located far away. With the help of remote
sensing, inaccessible or dangerous areas of the earth can
be easily detected timely. Remote sensing images, which
are the major source of remote sensing system, provide
opportunity to scan large areas of the Earth’s surface, as
it allows us to observe much more than what we can do
by standing on the ground. Some specific applications of
the remote sensing images involves tracking of clouds to
predict weather, changes on forests or farmland, mapping
the ocean bottom, and large forest fires etc. A number
of airborne and spaceborne sensors are available, which
provide remote sensing images to observe far away areas
promptly. Herein, the optical remote sensing images ac-
quired by satellite are used to detect changes on the earth
surface that have occurred within a time period [1].

Many unsupervised methods have been presented to
perform change detection on earth’s surface. Some of them
consider the spatial neighborhood information, whereas
some of them perform change analysis without spatial
neighborhood information taking into account. Moreover,
it has been seen that few change detection methods in-
troduced feature level difference image to provide bet-
ter results. In [2], local spatial contextual features are
extracted by applying Gabor wavelet transform on log-
ratio image, and two-level clustering is performed to get
the binary change map. Binary descriptors are applied on
individual images [3], and then Lloyd−Max's algorithm is

applied on the Hamming distance that is obtained in the
feature space. In [4]–[6], binary descriptor based technique
is again applied on local patch by using inter image
information. Furthermore, in [7], difference features are
extracted in feature space or kernel transformed space that
provide better results. In [8], two different kinds of dif-
ference images are generated by using subtraction and log
ratio operator, which are integrated after applying mean
and median filter, respectively. After that, the integrated
difference image is partitioned into two classes by using
k-means (KM) clustering algorithm. Such a combination
of difference image provides the advantage of local con-
sistency and smoothness obtained by the mean filter and
preservation of edge information obtained by the median
filter. In addition, Erreur Relative Globale Adimension-
nelle de Synthese (ERGAS) index is applied in the local
neighborhood to generate the gray scale image instead of
directly applying on two images [9]. As mentioned in [10],
preclassification of pixels is performed based on Gabor
feature and hierarchical fuzzy c-means (FCM) algorithm
in the first stage. Then, the second stage considers the
patches corresponding to interested pixels position that
are trained with PCANet Model. Finally, in the third
stage, results of preclassification and PCANet stages are
combined to get the binary change map. This trained
PCANet model, which uses representative neighborhood
pixels, provides robustness to speckle noise. Additionally,
on the basis of the input-space textures, the output-space
label-neighborhood information are extracted to construct
the lable-information (LI) kernel [11]. Incorporation of
spatial-contextual information using an anisotropic texture
analysis, label-information composite (LIC) kernel pro-
vides strong noise immunity and accurate edge locations
of the changed regions. However, without considering spa-
tial neighborhood information, automatic thresholding by
Expectation maximization (EM) technique provide more
false alarms in [12].

As mentioned above, incorporating local neighbor-
hood information, and generating difference data in fea-
ture space, both strategies provide better performance in
change detection analysis of remote sensing images. Mo-
tivated by this, this work proposes a spatial neighborhood
mutual information (MI) based technique, where MI is
calculated between the spatial neighborhood information
of both the satellite images for each pixel position and
the difference data is generated in the feature space.
MI provides the amount of information shared by one
variable about another. Also, It has been used in the field
of remote sensing as multimutual information (M-MI)



and multicontextual mutual information data (MMID) for
post-earthquake building damage assessment and SAR
image analysis, respectively. Here, MI based features are
generated for single band, and then, features from all bands
are concatenated to utilize the information coming from
all bands. Once the final features are obtained, binary
change map is created by using hard and soft clustering
separately and the results with these clustering algorithms
are compared. FCM and KM clustering algorithms are
used as soft and hard clustering in this work, respectively
[13], [14]. The proposed method according to two cluster-
ing algorithms are named as spatial neighborhood mutual
information k-means (SNMIKM) and spatial neighbor-
hood mutual information fuzzy c-means (SNMIFCM),
respectively.
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Fig. 1. Block diagram of the proposed technique.

II. PROPOSED METHODOLOGY

The purpose of this technique is to generate the change
map, which contains the change and no change pixels. To
achieve this goal, we consider two multispectral coregis-
tered bitemporal satellite images of the same geographical
location over a certain period of time. Suppose I1 and
I2 are the single-channel satellite images with size of
L1 × L2 pixels. Mutual information, which is based on
joint entropy, is used as a similarity measure tool in
the proposed change detection framework to identify the
changes between two multidate satellite images. Fig. 1
shows the block diagram of the proposed method, which
consists of the following steps: multidate images partition-
ing; calculation of spatial neighborhood MI; generation
of difference feature vector; binary map generation. The
detailed description of the proposed method is given
below.

A. Partitioning of both multi-date satellite images

In first step, multi-date images I1 and I2 are partitioned
into l× l overlapping patches or blocks. Hence, there will

be two patches from two images for each pixel, and the
center pixel of each patch is the the interested pixel. These
patches are represented as P1 and P2 for further analysis.

B. Calculation of MI

As mentioned above, corresponding to each pixel posi-
tion, there are two patches, which are obtained from both
the satellite images. These patches are utilized to compute
the MI for each pixel position. Therefore, it is considered
as spatial neighborhood MI in this work.

MI can be seen as a concept that measure the amount
of information contained by one variable about another.
MI has an advantage that it doesn’t require any prior
relationship between two variables or images. In addition,
as a similarity measure, MI analysis is based on the
statistical relationship of variables or images joint entropy.
MI is calculated by considering both individual entropies
and joint entropy of both the variables. It is defined as
follows:

MI(P1,P2) = H(P1) +H(P2)−H(P1, P2) (1)

where H(P1) and H(P2) are the entropies of the patch of
I1 and I2 images respectively, H(P1, P2) denote the joint
entropy and these entropies are defined as follows:

H(P1) = −
∑

p1(r)log2p1(r) (2)

H(P2) = −
∑

p2(s)log2p2(s) (3)

H(P1, P2) = −
∑

p12(rs)log2p12(r, s) (4)

where r and s represent the pixel location in the patch
P1 and P2 of I1 and I2 images respectively. p12(r, s) is
the probability of a pair of the joint pixels r and s of the
patch P1 and P2, respectively.

C. Creation of feature vectors

In this step, feature vectors for both the satellite images
are created by using the spatial neighborhood MI, which
is computed for each pixel position. To create the feature
vectors, each patch of of both I1 and I2 images is
converted into the vector. After that, spatial neighborhood
MI of each pixel position are multiplied with the vectors,
which are created by the patch of each image. The vectors
corresponding to each patch of multi-date images are
represented as

V1 (b1, b2) = {x1, x2, · · · , xR} (5)

V2 (b1, b2) = {y1, y2, · · · , yR} (6)

where R denotes the number of pixels available in patch
of I1 and I2 image, (b1, b2) is the pixel position in image
where b1 = {1, 2, · · · , L1} and b2 = {1, 2, · · · , L2}.

Now feature vectors corresponding to each pixel po-
sition for both the I1 and I2 images are calculated as
follows:

Fv1(b1, b2) = MIb1,b2(P1,P2)× V1(b1, b2) (7)



Fv2(b1, b2) = MIb1,b2(P1,P2)× V2(b1, b2) (8)

where Fv1 and Fv2 are the feature vector of I1 and I2
images, respectively, at each pixel position.

D. Generation of difference feature vectors

Taking difference of features in transformed feature
space always provides efficient features with respect to
taking difference in original domain. Therefore, instead of
directly working in difference image, here, difference is
taken between the features extracted from both images.
The difference feature vector is represented as follows:

Dfv(b1, b2) = Fv1(b1, b2)− Fv2(b1, b2). (9)

E. Concatenation of difference feature vectors

Since satellite images have multiple spectral bands, it is
worthwhile to use all bands in change detection analysis,
as it provides more information. Therefore, features from
all the bands are combined to get the final feature vectors.
Similarly as before, the difference feature vectors are
created for all the bands. After that, these feature vectors
are concatenated corresponding to each pixel position. The
concatenated feature vectors are represented as follows:

υ(b1, b2) = [D1
fv(b1, b2), D

2
fv(b1, b2), · · · , DB

fv(b1, b2)]
(10)
where B is the number of spectral bands. The final feature
vectors of all pixels are represented as

χ = [υ1, υ2, · · · , υL1L2
]T . (11)

F. Clustering for generation of change detection map

As it is known that there is unavailability of training
samples, therefore, classification of the feature vectors is
accomplished by unsupervised clustering. Clustering can
be described as assigning the set of objects into groups of
similar objects and these groups can be called as clusters.
There are two types of clustering algorithm exists as hard
and soft clustering. Here, KM and FCM clustering is used
as hard and soft clustering, respectively. The final features
are classified by both clustering algorithms and perfor-
mance of both clustering are compared. FCM is introduced
as extended version of KM clustering algorithm. Both
clustering techniques are described as follows.

1) KM clustering: KM clustering is designed to parti-
tion the observations into the defined number of clusters
according to the nearest mean [14]. To find hard partition-
ing of all pixels, the KM algorithm is applied on χ by
minimizing the following objective function

J (V) =
c∑

j=1

Sj∑
k=1

(‖υk − νj‖)2 (12)

νj = (1/Sj)

Sj∑
j=1

υk (13)

where V = [ν1, ν2] denotes the cluster’s centroids. c
represents the number of cluster centers. Si is the number
of observation points in ith cluster.

The labels in KM clustering is obtained by iteratively
minimizing the sum of distances from each observation to
its cluster centroid. The observations are moved within
clusters until the sum in objective function cannot be
decreased further.

2) FCM clustering: FCM is a soft clustering algorithm
in which every data point may belong to more than one
cluster rather than belonging to just one cluster as in
KM clustering. Here, data is partitioned by assigning the
membership grades to each observation, which belongs to
each of the cluster instead of belonging to only one cluster
as in hard clustering [13]. To find fuzzy partitioning of all
pixels, the FCM algorithm is applied on χ by minimizing
the objective function

Jd(U ,V) =
c∑

j=1

L1L2∑
k=1

µd
jk ‖zk − νj‖

2
(14)

s.t. µjk ∈ [0, 1],

c∑
j=1

µjk= 1 ∀ k, (15)

0 <

L1L2∑
k=1

µjk < L1L2 ∀ j (16)

where d is the degree of fuzziness and it is taken as
d ∈ [1,+∞). µjk is the membership grade that belongs to
ith cluster for jth pixel and represented with the partition
matrix U = [µjk]c×L1L2

.
Fuzzy partitioning is performed by updating the mem-

bership grade µjk and the cluster centroids ν through an
iterative optimization of the objective function Jd. Here,
d = 2, number of clusters, c = 2 are taken, and the
iteration procedure is initialized at l = 0.

The centroids and membership grades are calculated as
follows:

ν
(l+1)
j =

L1L2∑
k=1

(
µ
(l)
jk

)d

zk

L1L2∑
k=1

(
µ
(l)
jk

)d
(17)

µ
(l+1)
jk =

∥∥∥zk − ν
(l+1)
j

∥∥∥−2/(d−1)

c∑
r=1

µd
jk

∥∥∥zk − ν
(l+1)
r

∥∥∥−2/(d−1)
. (18)

The above created feature vectors are clustered by
the both clustering techniques, and the individual binary
change map is generated on the basis of index value that
are calculated by each clustering technique.

III. EXPERIMENTAL RESULTS

To get the effectiveness of the proposed method, the
experiments are tested on two real data sets. These remote
sensing images having multiple bands are acquired by
different sensors of Landsat satellite.
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Fig. 2. Satellite image change detection results of dataset I. (a) and (b) Landsat-7 (NIR band) multitemporal images. (c) reference map or ground
truth. (d) EM method. (e) BDLM method. (f) KKM method. (g) GaborTLC method. (h) and (i) SNMIKM and SNMIFCM method, respectively.
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Fig. 3. Satellite image change detection results of dataset II. (a) and (b) Landsat-8 (NIR band) multitemporal images. (c) Reference map or ground
truth. (d) EM method. (e) BDLM method. (f) KKM method. (g) GaborTLC method. (h) and (i) SNMIKM and SNMIFCM method, respectively.

A. Datasets Description
1) Dataset I: This pair of multitemporal images is

captured by Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) sensor. The observing site is Natural Lake, Ra-
jasthan, India. They are captured on February 09, 2001
and September 21, 2001 [6], [15], [16]. The size of the
images is 220× 550 pixels. The main land change is the
dried lake due to summer.

2) Dataset II: This pair of multitemporal images is
captured by Operational Land Imager (OLI) sensor of
Landsat 8. The observing site is Yambulla State Forest,
Australia. They are captured on October 01, 2015 and
February 06, 2016 [15]. The size of the images is 320×260
pixels. Bushfire is the main land change that occurred
across the Gold Mine road.

B. Qualitative Results
Basically, visual results are analyzed in qualitative as-

sessment, which allows to decide the generated change
map, roughly. The visual results of dataset I and II are
shown in Fig. 2 and 3, respectively, where the appeared
black and white pixels correspond to changed and un-
changed region, respectively. Here, binary change maps
are obtained by applying majority filter as a postprocess-
ing operation [17]. Experimental results of the proposed
method are compared with techniques like BDLM [3],
EM [12], GaborTLC [2], and kernel k-means (KKM) [7]
methods. By visualizing the qualitative results, it can be
observed that EM and BDLM techniques produces noisy
results due to detection of more false alarms. KKM and
GaborTLC technique provide noise free results but still
false alarms are more in KKM method than the proposed
one. The information of unchanged and change pixels are
detected better in the proposed method compared to the
reported techniques. Small changes along with the major
changed area are also detected with less false alarms
in the proposed method because it considers the spatial
neighborhood information around each pixel for feature
extraction. Although better visual results are provided by
proposed method, still it fails to detect some part of
changed area. When there is less variation in values of
changed pixels and all pixels present in any block or patch
are changed pixels then the value of MI between them
will be comparatively less. Hence, this variation will not
be reflected in feature vectors obtained after multiplication

of MI and these pixels will be detected as unchanged even
though they are changed.

Table I
PERFORMANCE MEASURES (%) FOR DATA SET I AND II

Datasets Method PCC PFA PTE κ

Dataset I
(Natural

Lake)

EM [12] 80.69 25.17 19.31 60.55
BDLM [3] 80.80 25.00 19.20 60.74
KKM [7] 80.85 8.36 19.15 53.21
GaborTLC [2] 87.99 0.24 12.01 69.63
SNMIKM 88.11 0.54 11.89 70.09
SNMIFCM 88.40 0.32 11.60 70.79

Dataset II
(Yambulla

State
Forest)

EM [12] 84.74 17.22 15.26 66.51
BDLM [3] 89.96 8.43 10.04 76.52
KKM [7] 91.50 1.40 8.50 78.48
GaborTLC [2] 89.82 1.16 10.18 73.68
SNMIKM 94.41 1.10 5.59 86.18
SNMIFCM 94.52 1.10 5.48 86.46

C. Quantitative Results

Here, change map is compared with ground truth
based on some predefined parameters [2], [3], which are
characterize as follows: 1) Overall accuracy or correct
classification or (OA) or (PCC), 2) False positives or false
alarms (PFP or PFA): the number of “unchanged” pixels
which are detected as “changed”, 3) Total error (PTE), 4)
Kappa coefficient (κ). To compare the proposed method
with the EM [12], BDLM [3], KKM [7], and GaborTLC
[2] methods, the reported techniques are implemented in
the same way as in [2], [3], [7], [12]. The performance
results in terms of all measures is shown in Table I.

In comparison to earlier reported techniques as stated in
Table I, the proposed technique yields better performance
in terms of all parameters. The increased accuracy and
kappa value, and reduced false alarms show the effec-
tiveness of utilizing the spatial neighborhood MI in the
proposed technique.

Sometimes may be the difference between the values of
changed pixels at any location is very less, however, MI
calculated for that location should be less but it became
moderate due to the influence of neighboring pixels. As
a result, features have very less variation that accounts
for the changed pixels to be detected as unchanged.
Moreover, may be the unchanged pixels are present at any
location, therefore, values of those pixels are obviously
very close to each other. However, MI calculated for
that location may again give moderate value due to the
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Fig. 4. The analysis of different patch sizes on the proposed method’ performance. (a) and (b) OA and κ for dataset I. (c) and (d) OA and κ for
dataset II.

influence of neighboring pixels. Consequently, features ob-
tained after multiplication with MI have very less variation
that accounts for the unchanged pixels to be overlapped
with above mentioned changed pixels. Due to the above
mentioned reasons, overlapping of features corresponding
to unchanged and changed pixels is occurring. SNMIKM
technique detects unchanged pixels very well but fails to
detect changed one because of the presence of overlapping
clusters. Therefore, SNMIFCM technique, which uses
FCM clustering, performs better in overlapping clusters.

The performance of different patch sizes on all datasets
for SNMIFCM method, which is better than the other
proposed technique, is shown in Fig. 4. It is observed that
kappa value and overall accuracy are decreasing as patch
size is increasing for all datasets. It is analyzed that when
patch size increases, more number of neighboring pixels
are coming into account for feature vector generation. If
the pixel at any location and majority of nearby pixels
belong to different classes then that pixel is assigned
to other class. Thus, changed and unchanged region are
varying according to the effect of large patch size means
surrounding pixels of actual changed areas are detected
as changed due to large patch size. Similarly, surrounding
pixels of actual unchanged areas are detected as unchanged
due to large patch size.

IV. CONCLUSION

This paper proposes an unsupervised spatial neighbor-
hood MI based technique. MI, which dose not require
any prior relationship between variables being utilized,
is calculated between the patches of both bitemporal
satellite images. Feature vectors are created for each
pixel position of multi-date images by considering the
neighboring pixels around each pixel. This neighborhood
information is multiplied with the MI to create feature
vector space. Then, difference feature vectors, which are
created in transformation space, provide more discriminant
information for change detection task. Since the local
neighborhood information is used in change analysis, this
results in better performance. Two methodologies have
been proposed where SNMIFCM provides better results
compared to SNMIKM technique. Experiments performed
on real multispectral satellite images demonstrate the
capability of the proposed method.
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