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Abstract–Tool Vibration induced in boring operations not only deteriorates the surface finish of 

workpiece but also adversely affects tool life and produce noise during the machining operation.  

Thus, it is essential to suppress these unwanted vibrations. Before applying any damping technique 

to suppress the chatter, it is necessary to know the behavior of the conventional tool. Therefore, in 

this paper, a traditional boring bar is modelled as a cantilever Euler-Bernoulli beam for which the 

first mode of vibration is considered. In addition, simulation of the system is performed in 

frequency and time domain and obtained stability lobe diagrams and time domain plots 

respectively. Further, these results are validated with finite element model. It is observed that the 

results of beam theory and finite element model are in good agreement. For minimizing the 

vibration levels, the concept of constrained layer damping is implemented with hybrid composite 

material as damping layer. The resultant vibration levels of such sandwiched boring tool with 

hybrid composite layer have drastically reduced in comparison with conventional tool. 

 

Keywords: Boring Bar, Chatter, Euler-Bernoulli Beam, Stability Lobes, Time Domain, Tool 

vibrations. 

1. INTRODUCTION 

Today, the manufacturing industries are producing a variety of components despite of the 

difficulties in achieving more accurate and precise products. The uncontrolled vibrations and noise 

produced during the machining operations often lead to imprecise products and frequent machine 

breakdowns. Over the last two decades, several researchers focused on the analysis and control of 

these so called regenerative chatter oscillations produced in different machining operations [1]. 

Boring is one of the oldest machining operations to enlarge the pre-drilled or cast holes in a 

component, where highly accurate surface finish of the product is required. Here, the boring tool or 

bar is the weakest part of the machining system and its motion is time dependent. Therefore, the 

workpiece deformation during boring operation produces dynamic motion or vibration in the tool. 

These vibrations deteriorate the surface finish of machined part and tool life. The recent concern is 

to attenuate the regenerative oscillations induced in the tool during machining. Therefore, it is 

necessary to suppress these vibrations by adopting some control techniques. 

There are different techniques of reducing vibration levels such as designing semi-active 

vibration absorber systems [2], active control techniques [3] to alter the motor currents and 

velocity/feed rates etc. However, passive damping is the most economical and popular method 

among all other methods for vibration minimization due to its feasibility in practical conditions. 

Polymers and fiber reinforced (FR) composites have gained attention in damping studies and widely 

used as passive dampers for cutting tools. 

Damping of the composite materials had been extensively studied by Lazan [4] and found that 

the logarithmic decrement values are dynamic stress dependent. Later, Bert [5] and Nashif [6] have 

investigated the damping capacity of fiber-reinforced composites and found to be higher than 

metals. Therefore, Rivin and Kang [7] developed a boring tool with viscoelastic layers and observed 

improved stability, stiffness and damping. Further, Hwang and Kim [8] reported that boring bar 

made with two or more material increases the stiffness and results in reduced vibrations during 

boring process. Biju and Shunmugam [9] and Du et al. [10] developed a boring bar with granular 

particle impact dampers (PID) and found higher energy dissipation compared with conventional 
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tools. Further, with advancement to the PIDs, Mei et al. [11] and Pour and Behbahani [12] used 

smart MR dampers on the boring bar for tuning the natural frequency of the tool, which results 

reduced chatter and improved stability of machining system. In recent years, piezoelectric damping 

is an advanced semi-active technique used for suppression of regenerative vibrations. Miguelez et 

al. [13] and Yigit et al. [14] modelled boring bar with piezoelectric shunt damping, presented an 

approach to suppress the vibrations and validated them by conducting experiments. 

However, constrained layer damping gained popularity compared to other damping methods 

because easy to implement and economic cost.  Therefore, the researchers in some works [15-18] 

have employed the constrained layered (or sandwiched) tool in boring as well as turning operations 

and observed a reduction in vibration levels with improved stiffness. Moreover, limited work is 

noticed on the stability studies of boring operations with sandwiched boring bar. 

In the present work, first, the modelling procedure of a conventional boring bar using Euler-

Bernoulli beam theory is presented. From the tool tip frequency responses, the stability lobe 

diagrams are generated for different overhang lengths. The results are validated with the finite 

element modelling (FEM) of the tool. A hybrid composite material (e.g. glass/SiC-epoxy) is used as 

damping materials (sandwich material) over the tool surface and modelling is further carried-out 

with equivalent material properties. The remaining part of paper is organized as follows: analytical 

and numerical modelling are first presented for the boring operations with regeneration. Also, the 

modelling of constrained layer damped tool is presented. The results are presented for a test case of 

boring bar employed for short length internal turning operation. 

2. DYNAMIC MODELLING OF THE BORING BAR 

The dynamic modelling of the conventional as well as sandwiched (constrained layered) boring bar 

are elaborated below. 

2.1 Euler-Bernoulli beam theory 

The bending of the boring bar is considered such that the stiffness of workpiece is much higher than 

the boring bar. Tangential and radial vibrations are the result of this bending mode. Tangential 

vibrations are in speed direction, which will not affect the regenerative nature of chip whereas radial 

vibrations change with cutting depth, which will produce the regenerative effect.  On the other 

hand, the axial and torsional stiffness values of the boring tool are significantly larger than in 

bending. Hence, the analysis is carried out with the assumption that the boring bar is rigid in the 

axial and torsional directions. Therefore, the tangential, axial and torsional vibrations are ignored in 

the present modelling process. Figure 1 shows the cantilevered boring bar in bending with the 

Euler-Bernoulli beam element. 

 



Figure 1. Dynamic model of the boring bar for Euler-Bernoulli beam theory 

Equation of motion of the boring bar describing dynamics is given by 
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where, E, A, c,   and  ,y x t  are elastic modulus, area of cross section, damping coefficient, 

material density and deflection or displacement of the boring tool.      , , ,cf x t K d y x t y x t T     is the 

distributed force acting on the boring bar. Equation (1) can be solved using mode superposition 

principle, where the beam deflection is assumed as: 
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where,  i x and  iq t are the mode or characteristic function and generalized coordinates 

respectively for the given system. The boundary conditions at the fixed end, i.e.,  0 0x   are 

 0 0x   and    0 0x   whereas at free end, i.e.,  0x l  are  0 0x  and  0 0x  . Substituting 

(2) in (1) and multiply with  i x , integrating it over 0 to 1 by applying orthogonality conditions, 

which are given below: 
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Using the generalized coordinate system, (1) can be further modified as follows 
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Equation (5) is used for simulating the process with various values of speed and depth of cut. 

This time domain simulation is useful for identification of chatter so that one can adopt some 

damping technique to control the vibration in boring bar. 

2.2 Finite element modelling 

In the present analysis, the boring tool is considered as cantilever beam and Euler-Bernoulli beam 

theory is applied for determining the natural frequency. Further, time domain model is established 

and simulated to investigate vibrations in the boring bar.  The tool is discretized into five nodded 

beam elements with four degrees of freedom at each node are taken, which is shown in Figure 2. 

 



Figure 2. Finite element model of the boring bar 

Tobias [19] presented a classical cutting force model for cutting operation in radial direction, 

which is given by 

   y cF K d y t y t T                    (6) 

where, d and cK are depth of cut and cutting force coefficient respectively.  y t and  y t T are the 

displacements of current and previous pass of the tool respectively.  

The equation of the boring tool in radial cutting direction is given by: 
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where,   K  and  M are 2 2n n global stiffness and mass matrices respectively obtained by 

accumulating the elemental  matrices and the boundary conditions of the tool, i.e., for clamped-free 

are applied. n is number of beam elements are considered along the length of the tool. 1y and 1 are, 

respectively, displacement and slope, which are equal to zero at node 1 since the boundary 

condition is clamped. In addition, the dynamic cutting force  yF is set to the  1
th

n  node of the 

force matrix. Damping matrix, i.e.,  C  is determined from equation given by 
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where,   is normalized modal matrix which satisfies the conditions like       2diag
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Both   and i are evaluated by solving the Eigen function characteristic equation of the system, 

i.e.,        2 0i iK      where  i is thi  mode shape vector. i represents system’s damping ratio 

for thi mode and found by performing experimental modal analysis (EMA). Moreover, EMA is used 

to validate finite element model. Figure 3 shows impact hammer test setup to find out the modal 

parameters of the boring bar. 

 

Figure 3. Impact hammer test setup 

2.3 Modelling of sandwiched boring bar 

Viscoelastic materials are widely used in vibration control due to its high damping capacity. 

However, these cannot be directly used as structural material because of their low elastic modulus. 

Therefore, a sandwiched boring bar with three layers is proposed in this paper. It mainly consists of 

core material (CM), damping layer (DL) and constrained layer (CL). 40cr steel, hybrid composite 

(glass/SiC-epoxy), 317 stainless steel are respectively considered as core, damping and constrained 



layer materials. The primary role of damping layer is to improve the fundamental natural frequency 

by reducing the mean boring bar density and other is to improve the damping capacity. Whereas, 

the role of constrained layer is to improve natural frequency and stiffness of the boring bar and to 

protect the damping layer. The thickness of the damping and constrained layers are taken as 2 mm 

and 1 mm respectively. The diameter of the base material used for the analysis is 20mm. The 

sandwiched boring bar is shown in Figure 4. 

 

Figure 4. Sandwiched type boring bar 

The general methods used in dynamic analysis of composite structure are modal strain energy 

(MSE), direct frequency response and complex egen value methods. The Last two methods 

calculate the parameters in complex domain, application of same in complex structure is very 

costly. Therefore, MSE is adopted in the present analysis and is based on strain energy and loss 

factor. This method is used to analyze and optimize the damping parameters in finite element 

analysis. 

The strain energy of base material  bU , damping layer  dU , constrained layer  cU  and 

composite  eU are expressed resepectively as  

     
1

2

T
b b

U K                  (9) 

     
1

2

T
d d

U K                  (10) 

     
1

2

T
c c

U K                  (11) 

     
1

2

T
e e

U K                  (12) 

where,  is a real vector of undamped system,       , , 
b d c

K K K are the stiffness matrices of base, 

damping, constrained layers respectively and  
e

K is an equivalent stiffness matrix of the sandwiched 

boring bar. 

The equivalent stiffness matrix of the sandwiched boring bar can be expressed as a relationship 

betweeen base, damping and constrained layer stiffness matrices as follows 
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The dissipation of energy by the damping layer in cycle is expressed as  
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where,  is the loss factor of damping material. 

 The loss factor of sandwiched composite boring bar is obtained by 
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 The equivalent density and bending stiffness values are determined from the following equations 
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 After determining the equiavalnet properties, mass and stiffness matrices of the sandwiched 

boring bar, finite element analysis is performed for evaluating  the modal parameters. Further, the 

time domain (i.e., the tool tip displacement w.r.t time) plots  are simulated using the evaluated data. 

3. RESULTS AND DISCUSSIONS 

3.1 Results of beam theory 

The stability state of the system changes if the stiffness of the boring tool is adjusted. For studying 

the effect of variation of stiffness, the stability lobes are plotted for natural frequencies at 360Hz, 

365 Hz and 370Hz, which are shown in Figure 5. The stability lobes of the system shift to the right 

with an increase in natural frequency, providing an enhanced stability region. 

 

Figure 5. Stability lobes for various natural frequency values 

A point S is considered in Figure 5 for the demonstration of the suppression of the boring tool 

vibrations with speed and cutting depth of 985 rpm and 0.033 mm respectively. From the Figure 5, 

the point S is in the unstable region at a frequency of 360 Hz and corresponding time domain plot is 

given in Figure 6a. This means the vibration of the tool increased without boundary resulting chatter 

in the machining process.  

 



 

 

Figure 6. Time domain simulations of the boring bar found form beam theory for a natural frequency 

equals to a) 360 Hz, b) 365 Hz and c) 370 Hz 

S is located on the stability lobes when the natural frequency increased to 365 Hz and respective 

tool vibration is shown in Figure 6b. This results in a constant vibration level at the tool-tip, which 

shows the system is critically stable.  Similarly, S is in the conditional stable state at a frequency of 

370 Hz and the tool-tip vibration is shown in Figure 6c. It is observed that the vibration decays 

quickly, which indicates the machining process is stable. 

It can be concluded from the simulations that the vibrations occur during boring process in the 

tool can be attenuated by improving the system’s natural frequency. This can be achieved by 

employing the proper vibration control technique. 

3.2 Results of finite element modelling 

In this section, the results obtained from the finite modelling of the tool are elaborated. The global 

stiffness and mass matrices are built. Further, a convergence analysis is carried out to find the pre-

dominant natural frequency of conventional and sandwiched boring bar at first vibration mode. 

Moreover, EMA is conducted for determining the modal parameters, which validates the results of 

FEM model. Figure 7 shows the frequency response plot for the conventional as well as sandwiched 

boring tool obtained from the impact hammer test and the fundamental natural frequencies are found 

as 368 Hz and 476 Hz respectively. These frequencies are approximately equals to the frequency 

determined from FEM. This indicates the results of FEM are in good agreement with experiments. 
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Figure 7. Frequency response plot obtained from impact hammer test for conventional and 

sandwiched boring bar 

In addition, the damping ratios are evaluated from modal test and (8) is used for determining the 

damping matrix  C . Further, time domain simulation are performed using MATLAB for the equation 

of the motion shown in (7). This simulation is used to determine the limiting cutting depth in boring 

operation for all values of speed, which gives the stability lobe plot. Finding stability lobes in the 

frequency domain is easier whereas time taking process in time domain. Even though, time domain 

simulations are more desirable than the frequency domain (stability lobes) plots because condition 

monitoring of tool is more comfortable in the time domain. The time domain plots obtained from the 

FEM for both conventional as well as sandwiched tool are shown in Figure 8. The cutting speed and 

depth of cut used for the simulation are 985 rpm and 0.03 mm respectively. The cutting stiffness 

coefficient is taken as 1680 N/mm. The simulation is performed using the delay differential 

equations using MATLAB. 

 

Figure 8. Tool tip displacements vs time plot for both the conventional and sandwiched boring tool 

using finite element method 

From Figure 8, it has been observed that the time domain obtained for conventional boring tool 

from FEM shows constant vibration level which indicates critically stable state of the machining 

process for a given set of cutting conditions. It is also found that the time domain of sandwiched 

boring tool shows vibration decay results a stable cutting process for a set of parameters. This is due 

to the damping layer introduced in the sandwiched boring bar has the high damping capacity, which 

can dissipate the vibration energy produced in the tool within the volume of the material. Therefore, 



the vibrations can be controlled with the provision of damping materials. The sandwiched boring 

bar changes the dynamic stiffness through constrained layer and improve the damping performance 

through damping layer. Hence, it is concluded that the results of beam theory are very useful to 

study the FEM results. It is found that the sandwiched boring bar shows better results compared to 

conventional tool. Thus, the vibrations in the tool are controlled with use of sandwiched boring tool. 

It is suggested that change of damping material in the sandwiched tool may further improves the 

tool stiffness as well as damping capacity and results in reduced vibrations. 

4 CONCLUSION 

The boring bar is modelled as cantilevered Euler-Bernoulli beam and equation of motion is 

expressed in generalized coordinates. This equation has solved to obtain the time domain 

simulation. The stability lobes are plotted for different frequencies and a point ‘S’ is located on it 

for further analysis. In addition, the time domain plots are simulated using MATLAB by varying 

speed and depth of cut to observe the vibration level in the boring bar and carried out the stability 

analysis. Further, finite element modelling of the conventional and sandwiched boring bars has been 

performed and results of beam theory are used for analyzing the FEM results. It has been observed 

that the time domain (tool tip displacement) of conventional tool is critically stable (constant 

vibration) whereas stable (quick decay) for sandwiched boring tool. Therefore, it is concluded that 

the sandwiched boring bar shows better results compared to conventional tool for reducing the 

vibrations. This is mainly due to the damping layer provided in the sandwiched boring bar has high 

damping capacity, which dissipates the vibration energy produced in the tool within the volume of 

the material. Also, the sandwiched boring bar changes the dynamic stiffness through constrained 

layer and improve the damping performance through damping layer.   Therefore, the sandwiched 

boring tool is very helpful for controlling tool vibrations in boring operation. Further, it is suggested 

that the damping performance and tool stiffness may improve respectively by changing the damping 

and constrained layer material of the sandwiched boring bar. 
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