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Abstract—This paper presents a novel compressed domain
technique for detecting zooming camera in video sequences
and its further classification into zoom-in camera and zoom-
out camera. The inter-frame block motion vector field serves as
the input to the proposed system which is partitioned into four
representative quadrants for analysis purposes. The histograms of
these four quadrants are analyzed utilizing histogram intersection
feature for zoom motion detection while the cumulative histogram
of these four quadrants are analyzed utilizing Kullback-Leibler
divergence feature for zoom motion classification purposes. Ex-
perimental validation carried out utilizing block motion vectors
extracted using Exhaustive Search Motion Estimation algorithm
as well as H.264 decoded block motion vectors demonstrate
superior performance in comparison to existing techniques.

Index Terms—zoom motion, histogram intersection, Kullback-
Leibler divergence, camera motion, compressed domain, support
vector machine, block motion vectors.

I. INTRODUCTION

Motion in video sequences occurs due to either object
motion, camera motion or due to combination of object as
well as camera motions. The camera dynamics occur mainly
due to the movement of the camera and needs to be recognized
for video analysis purposes since it has various applications
like autonomous navigation [1], video saliency estimation [2],
video indexing and retrieval [3] to name a few. The motion of
the camera can be translational wherein the motion is either
in horizontal (referred as pan) direction or vertical (referred
as tilt) direction or it can be zooming in nature where the
environment under capture is brought near (referred as zoom-
in) or taken away (referred as zoom-out) from the camera.

Due to the existence of various types of camera motion
in video sequences namely panning, tilting, zooming etc.
the first job at hand would be to detect zooming motion
and later separate it into either zooming-in or zooming-out
camera motion types which is the objective of the current
work presented in this paper. Major focus on zoom motion
in video sequences has been from the video coding domain
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particularly the motion compensated prediction problem [4]–
[6] for compression applications. However, zoom motion has
also wide applications from video analysis point of view
with applications ranging from indexing [7], retrieval [8],
saliency estimation [9] to name a few. Zoom v/s non-zoom
detection utilizing expectation maximization (EM) was carried
out by Jin et al. [10]. However, since EM was utilized it had
issues with initialization and convergence which affected the
accuracy. Duan et al. [3] proposed an non parametric scheme
for classifying camera motion categories with applications
for video indexing and retrieval. They utilized mean shift
clustering for identifying dominant motion clusters which
was finally used for camera motion recognition. Since they
used features namely cluster size, cluster number along with
histograms of projected positions for identification purposes
their method had shortcomings since these features were not
able to bring out the underlying relationship of the block
motion vectors. This method was improved in [11] wherein
polar angle and magnitude histograms were used using a
learning based scheme for identifying six camera motion types
including zooming camera. However, in their work the zoom
motion classification into zoom-in and zoom-out was left as
future work since their focus was on translational camera for
video stabilization applications. In [12] a transferable belief
parametric model was utilized for the camera motion recog-
nition problem. However, it utilized the Motion2D software
to carry out the initial estimation of parameters, thereby not
making it a stand alone algorithmic entity. In this paper, both
the zoom motion detection as well as its further classification
into zoom-in and zoom-out is carried out utilizing the concept
of histogram intersection and Kullback-Leibler divergence [13]
by analyzing the orientation histograms obtained by dividing
the block motion vectors into four representative quadrants.
Our results show superior performance in comparison to
existing methods when tested using Exhaustive Search Motion
Estimation (ESME) as well as H.264 compressed videos.
Zoom motion detection and its classification into zoom-
in/zoom-out plays a vital role in object localization which has
applications in surveillance and autonomous navigation. Rest
of the paper is organized as follows. Section II highlights978-1-5386-9286-8/19/$31.00 © 2019 IEEE



Fig. 1: Inter-frame Block Motion Vector Field.

Fig. 2: Motion Vector Patterns corresponding to (a) zooming and (b) non-zooming camera.

the key contributions of the paper. Section III describes the
proposed zoom motion detection and classification technique
while Section IV gives the experimental results and finally in
Section V we draw the conclusions.

II. KEY CONTRIBUTIONS

The contributions made in this work are two-fold. Firstly,
zoom motion is recognized in video sequences i.e. identi-
fied from other camera motions like pan, tilt etc. utilizing
the concept of histogram intersection between the quadrant
histograms. Secondly, the identified zooming frames are fur-
ther classified into zooming-in camera type and zooming-out
camera type using the KL divergence between cumulative
histogram of quadrants.

III. PROPOSED METHOD

A. Zoom motion detection

The proposed method utilizes the block motion vectors
extracted from the compressed bitstream. Fig. 1 shows the
inter-frame block motion vector field between two frames
(frame # 33 and frame # 34) of sequence table tennis. As
observed the block motion vector field shows various orien-
tations corresponding to the nature of block motion vectors.
The knowledge of nature of orientation pattern in case of
zooming and non-zooming block motion vector fields will
aid in detecting and separating the zooming camera from

non-zooming camera. Fig. 2(a) shows the orientation patterns
corresponding to the zooming camera motion pattern and Fig.
2(b) shows the orientation patterns corresponding to non-
zooming category. As observed, the orientation pattern nature
is different for the zooming camera and non-zooming camera
which is exploited in this study by partitioning the block
motion vector field into quadrants. The inter-frame block
motion vector field between two frames is partitioned into
4 quadrants (Q1, Q2, Q3, Q4) for analysis purpose as shown
in Fig. 4. The orientation histogram for the quadrants are
estimated separately followed by calculating the histogram
intersection between the quadrants to arrive at the feature
vector which is utilized to train the C-SVM [14] classifier
for separating the zooming frames from non-zooming frames.
The detailed step by step description is given below;

1) Estimate the orientation of block motion vectors utilizing

MVori = arctan

(
MV Y

MV X

)
0 ≤MVori < 360 (1)

where, MV Y → vertical component of block motion
vector and MV X → horizontal component of block
motion vector

2) Partition the inter-frame block motion vector field of size
N1×N2 into 4 quadrants (Q1, Q2, Q3, Q4) as shown in
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Fig. 3: Block motion vector field pattern for (a) Panning camera (b) Zooming camera.

Fig. 4, followed by estimating the orientation histogram
of individual quadrants utilizing

HQi
(l) =

1
N1

4 ×
N2

4

R∑
j=1

S∑
k=1

f1(Qi(j, k); l) (2)

where, l ∈ [0o, 360o], R × S is size of individual
quadrant (Qi) with R = N1

4 & S = N2

4 and

f1(x, y) =

{
1 if x = y

0 otherwise
(3)

3) Estimate the histogram intersection (HI) between quad-
rants (Q1 and Q2), (Q1 and Q3), (Q2 and Q4) and (Q3

and Q4) utilizing

HIm,n =

∑l
q=1min(HQm

(q), HQn
(q))∑l

q=1HQn
(q)

(4)

where, m ∈ (1, 1, 2, 3), n ∈ (2, 3, 4, 4)
4) Concatenate the histogram intersection of the quadrants

estimated earlier to form the Feature Vector (FV)

FV = [HI(1,2), HI(1,3), HI(2,4), HI(3,4)] (5)

5) Train the C-SVM classifier with linear kernel utilizing
the feature vector formed for separating zooming frames
from non-zooming frames.

The histogram intersection between two quadrants finds
the amount of overlap between the orientation bins of the
respective quadrants. If the orientation bins are similar for the
quadrants under analysis as observed from Fig. 3 (a) then Eq.
(4) tends towards 1 (i.e maximum overlap) signifying non-
zoom motion (i.e pan, tilt). On the other hand for quadrants
possessing dissimilar orientation bins as observed from Fig.
3 (b), Eq. (4) tends towards 0 (i.e least overlap) signifying
zooming camera motion. This concept is exploited in the
current work to distinguish between a zooming camera and a

Fig. 4: Inter-frame block motion vector field (size N1 ×N2)
depicting the partitioning into 4 quadrants.

non-zooming camera. The rationale for computing histogram
intersection between only specific pairs of quadrants is based
on exploiting the concept of similarity between block motion
vector orientations. As observed from Feature Vector formed
in Eq. (5) adjacent quadrants (1, 2) & (3, 4) and diagonally
opposite quadrants (1, 3) & (2, 4) are utilized to estimate
the histogram intersection. In case of zooming frames these
quadrants (adjacent and diagonal) result in least overlap due
to dissimilar orientation types while in case of non-zooming
frames (pan/tilt etc.) these quadrants result in maximum over-
lap due to similar orientation types.

B. Zoom motion classification

Once the zooming frames have been detected the next
task would be to classify them into zooming-in camera and
zooming-out camera. Fig. 5(a) and Fig. 5 (b) show the block
motion vector field for zooming-in and zooming-out camera
motion types, respectively. As observed, Zooming-in camera
has motion vectors pointing outward from the center of frame
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Fig. 5: Block motion vector field pattern for (a) Zooming-in camera (b) Zooming-out camera.

(i.e diverging field) while Zooming-out camera has motion
vectors pointing towards the center of the field (i.e converging
field). In-order to classify them, we utilize the Kullback-
Leibler (KL) divergence between diagonal and adjacent quad-
rants as described below;

1) Estimate the orientation of block motion vectors utilizing
Eq. (1).

2) Partition the inter-frame block motion vector field into
4 quadrants utilizing Eq. (2)

3) Estimate the cumulative histogram of individual quad-
rants utilizing

CHQi
(q) =

q∑
j=1

Hj (6)

where, Qi is the ith quadrant with i ∈ (1, 2, 3, 4) and q
∈ (1 . . . 360)

4) Estimate the Kullback-Leibler (KL) divergence between
the cumulative histograms of quadrants (CHQ1

and
CHQ3

), (CHQ1
and CHQ4

), (CHQ2
and CHQ3

),
(CHQ2

and CHQ4
) utilizing

DKL(CHQm ||CHQn) =

360∑
q=1

CHQm(q) log

(
CHQm(q)

CHQn
(q)

)
(7)

where, m ∈ (1, 1, 2, 2), n ∈ (3, 4, 3, 4)
5) Concatenate the KL-divergence of the quadrants to form

the Feature Vector (FV)

FV = [DKL(CHQ1
||CHQ3

), DKL(CHQ1
||CHQ4

),

DKL(CHQ2
||CHQ3

), DKL(CHQ2
||CHQ4

)]
(8)

6) Train the C-SVM classifier with linear kernel utilizing
the feature vector formed for separating zooming-in
frames from zooming-out frames.

The KL divergence measures the amount of similarity
between two distributions. In the current scenario, the cu-
mulative histograms of quadrants are utilized to study the

behaviour of block motion vectors in case of Zooming-in
camera and Zooming-out camera cases followed by estimating
the KL-divergence between the cumulative histograms of the
quadrants. Cumulative histogram (distribution) is chosen since
it provides information of how the orientation patterns vary in
each quadrant for zoom-in/zoom-out pattern types. We have
not normalized the cumulative histogram before its application
in Eq. (7) and plan to do it when we exploit the proposed zoom
motion classification scheme for saliency application in future.
In case of Zooming-in camera the KL divergence between
the diagonally opposite and adjacent quadrants will be large
since motion type is divergence (i.e vector pointing outwards)
while for Zooming-out camera the KL divergence between
diagonally opposite and adjacent quadrants will be relatively
small since motion type is convergence (i.e vectors pointing
inwards). This concept is utilized to separate the Zooming-
in and Zooming-out camera motion types. The horizontally
adjacent quadrants are excluded while estimating the KL
divergence since it has been observed in our experimental
simulation that including it in the feature vector does not
significantly change the accuracy. This is due to the fact
that whilst recognizing zoom-in v/s zoom-out camera types
the maximum change in orientation will occur in vertically
adjacent quadrants i.e. (1, 4) & (2, 3) and diagonally opposite
quadrants i.e. (1, 3) & (2, 4).

IV. RESULTS

MATLAB R2016a is utilized for experimentation. Se-
quences available at https: //media.xiph.org/video/derf and
https://nsl.cs.sfu.ca/wiki/index.php/ Video Library and Tools
which are standard in video analysis studies namely Tractor,
Shields, Stefan, Station, Flowervase, Waterfall, Coastguard and
Tempete are used. The zooming and non-zooming frames used
in training and testing are manually labeled. Inter-frame block
motion vectors are generated from these sequences by utilizing
Exhaustive Search Motion Estimation (ESME) algorithm with
block size ’4×4’, search range [-12 12] and cost function set to



TABLE I: Accuracy (%) for zoom motion detection at false
positive rate set to 1%.

Block Motion Accuracy (%)
Vector Type [3] [11] proposed

method
ESME 91.08 92.25 96.71

ESME corrupted with 57.41 51.01 85.43
gaussian noise (σ2 = 10)

ESME corrupted with 51.25 50.16 70.00
gaussian noise (σ2 = 20)

ESME corrupted with 50.41 49.83 61.11
gaussian noise (σ2 = 30)

H.264 81.53 94.81 97.94

TABLE II: Area Under Curve (AUC) for zoom motion detec-
tion demonstrating the performance on various block motion
vector types.

Block Motion Vector Type proposed method
ESME 0.9958

ESME corrupted with 0.9289
gaussian noise (σ2 = 10)

ESME corrupted with 0.8297
gaussian noise (σ2 = 20)

ESME corrupted with 0.7338
gaussian noise (σ2 = 30)

H.264 0.9987

MAD. H.264/AVC obtained block motion vectors are also used
to demonstrate the performance on a real codec by encoding
them using JM19 encoder [15] (Software) with GOP IPP. . .
and block size ’4× 4’ to maintain consistency in comparison
with ESME block size. Block motion vectors extracted from
these encoded sequences (using Idecode.exe in JM-19) form
the practical block motion vector case. Comparative studies
is carried out with method proposed in [3] where dominant
motion clusters were identified utilizing mean shift clustering
followed by extracting features from the dominant clusters for
camera motion recognition as well as method proposed in [11]
where a learning based camera motion characterization scheme
based on polar angle and magnitude histograms was utilized
for recognizing six camera motion types.

A. Classifier Details

C-SVM with linear kernel is utilized for carrying out the
classification studies. For each training and testing pair 40% of
zoom and 40% of non-zoom samples are picked up randomly
to train the C-SVM classifier and the remaining samples were
used for testing. The above procedure is repeated thirty times
using five fold cross validation on the training set. The cost
parameter ’C’ is trained and is used to obtain optimum cost in
range {i|i ∈ {0.1, 0.5..10}}. 2000 frames from each class type
are utilized for training the C-SVM and the frames from each
class type which are not utilized for training are picked for
testing. Same combination of sample size and classifier type
is used in classifying zoom-in and zoom-out camera types.
The detection accuracy is taken as the average of probability

of true positive rate (Ptp) and true negative rate (Ptn) and this
is averaged over 30 random experiments utilizing

Accuracy(%) =

(
Ptp + Ptn

2

)
× 100 (9)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 P
os

itiv
e 

Ra
te

ESME
H.264
ESME

gau-10

ESME
gau-20

ESME
gau-30

Fig. 6: ROC curves depicting the zoom detection (zoom v/s
non-zoom) performance on various block motion vector

types.
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Fig. 7: ROC curves depicting the zoom classification
(zoom-in v/s zoom-out) on various block motion vector

types.

B. Objective Evaluation

Objective evaluation for the proposed technique is carried
out in two ways: 1) ROC and AUC analysis which signifies the
general detection performance and 2) by measuring detection
accuracy at a low probability of false positives rate setting.
The false positive rate is set to 1%, since this is the most
widely used setting in classification studies. In order to analyze
the robustness of the proposed method we add gaussian noise
to both horizontal as well as vertical components of the
block motion vector with zero mean and varying variance
(σ2 = 10, 20, 30) thereby generating 3 additional datasets for
the experimental studies which we refer as ESMEgau−10,
ESMEgau−20 and ESMEgau−30. Fig. 6 shows the ROC
curves for ESME and its noise added variants and as observed



TABLE III: Accuracy (%) for zoom motion classification at
false positive rate set to 1%.

Block Motion Accuracy (%)
Vector Type [3] proposed

method
ESME 76.03 98.25

ESME corrupted with 63.53 89.24
gaussian noise (σ2 = 10)

ESME corrupted with 52.82 83.30
gaussian noise (σ2 = 20)

ESME corrupted with 50.50 76.56
gaussian noise (σ2 = 30)

H.264 60.31 98.55

.

TABLE IV: Area Under Curve (AUC) for zoom motion
classification demonstrating the performance on various block
motion vector types.

Block Motion Vector Type proposed method
ESME 0.9991

ESME corrupted with 0.9822
gaussian noise (σ2 = 10)

ESME corrupted with 0.9636
gaussian noise (σ2 = 20)

ESME corrupted with 0.9468
gaussian noise (σ2 = 30)

H.264 0.9994

ESME achieves the best detection performance followed by
drop on its noise added variants where it is noted that detec-
tion performance drops with increase in the variance of the
added gaussian noise i.e. (ESMEgau−30 < ESMEgau−20

< ESMEgau−10). The corresponding AUC values are shown
in Table II. The performance evaluation for Zoom motion
classification is shown in Fig 7 which shows similar trend for
ESME and its noise added variants. The corresponding AUC
values are shown in Table IV.

Next, the detection accuracy at FPR < 1% obtained by
the proposed method is shown in Table I and Table III. As
observed the performance for the proposed method is better for
all cases in comparison to existing methods thereby signifying
the robustness of the proposed method which is due to the
fact that the quadrant analysis using measures like histogram
intersection for zoom motion detection and KL divergence
for zoom motion classification is better able to capture the
mutual relationship between the orientation of block motion
vectors. It is observed from Fig. 6 and Fig. 7 that H.264
case achieves nearly same performance as ESME case in both
zoom detection as well as zoom classification scenarios since
H.264/AVC uses the concept of ”skipped” motion inference
wherein a skipped area of a predictively coded (P) frame
infers motion content and aids in the detection as well as
classification process which is very useful while coding video
containing camera (global) motion.

V. CONCLUSIONS

This paper investigated the zoom motion detection as well
as its further separation into zoom-in and zoom-out camera
in case of compressed domain videos. The first motive was
to detect zooming frames from non-zooming frames which
was carried out utilizing the histogram intersection between
quadrants as a feature. Once the zooming frames were de-
tected, the next task was to separate them into zooming-in
and zooming-out types which was carried out utilizing the
KL divergence between quadrants as a feature. C-SVM clas-
sifier was utilized for training/testing purposes. Comparative
analysis with existing methods using ESME as well as H.264
obtained block motion vectors showed very good performance
for the proposed method. Our future work is focussed on
exploiting the zooming cue for estimating salient regions in
video sequences.
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