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Abstract— Deep learning techniques have recently 
exhibited unprecedented success in classification problems 
with ill-defined mathematical models. In this paper, we apply 
deep learning for RF data analysis and classification. We 
present a novel method of using I-Q time samples to form 
images with ‘Time and Discrete Orthonormal Stockwell 
Transform Domain Channels’ which are used for training a 
convolutional neural network (CNN) for radio modulation 
classification. Also, a concept inspired from transfer learning 
is used in extending the number of output classes of the CNN, 
which helps the network to estimate the approximate SNR of 
the input signal as well and further improve the classification 
accuracy. Such a network trained on Time and Stockwell 
Channeled Images performs superior to similar networks that 
are trained on just raw I-Q time series samples or time-
frequency images, especially when training samples are less. 
The network achieved an overall classification accuracy of 
97.3% at 8 dB SNR over a class of 10 radio modulation 
schemes (for both digital and analog systems). The study 
shows that such a trained network can be well applied to 
achieve high classification accuracies at low and moderate 
SNR scenarios. 

Keywords—deep learning, convolutional neural network, 
modulation classification, Stockwell transform, discrete 
orthogonal Stockwell transform, time and Stockwell domain 
channeling.  

I. INTRODUCTION  

ADIO data available from an antenna is often easily 
captured, but in the modern day it is difficult to label 

and curate the data accurately from the complex high-data 
rate RF information. The strategies adopted for such tasks 
are often time-consuming, and their implementations are 
not precise under varying environmental conditions. Hence, 
blind radio signal recognition and identification at the 
receiver end has turned out to be a very useful and important 
tool in dense, multi-user scenarios. Fast labeling and 
understanding of the radio spectrum can provide added 
advantages like optimized spectrum utilization, minimized 
and identifiable interference, spectrum policy enforcement, 
and implementing efficient spectrum sensing and 
coordination systems.  Hence it has enabled radio fault 
detection, spectrum interference monitoring, dynamic 
spectrum access, opportunistic mesh networking and 
numerous other fields in communication systems. 

Modulation classification is the process of blindly 
identifying and differentiating radio signals at the receiver 
end, as a step towards understanding the type of 
communication schemes being used by the transmitters in 
the vicinity. Modulation recognition or classification is a 
front-end tool in number of applications like link adaptation, 
modern military signal intelligence systems, spectrum 
monitoring systems, unmanned aerial drones, dynamic 
spectrum access, cognitive radio, and cellular standards like 
LTE-Advanced. 

The last two decades have seen wide variety research on 
developing novel methods and algorithms for automatic 
radio modulation classification/recognition. Many of these 
are carefully designed feature extraction based techniques 
which project the received signal on a low-dimensional 
feature space in which compact decision boundaries can 
help differentiate one radio modulation from the other [1]. 
Modulation classification can also be performed using 
generative algorithms based on probabilistic models like 
Naïve Bayes [2], hidden Markov models obtained with 
maximum likelihood estimation [3] and methods that uses 
likelihood ratio tests such as the average likelihood ratio test 
(ALRT) [4], generalized likelihood ratio test (GLRT) [5] 
and the hybrid likelihood ratio test (HLRT) [6]. Integrated 
cyclic moment-based features [7] and features based on 
CSS (Concatenated Sorted Symbols) [8] are widely popular 
for forming analytically derived decision trees to sort 
modulations into different classes. Despite its robustness 
against noise and interference, cyclostationary analysis of a 
signal has a high computational cost and is not efficient for 
quick labeling and real-time modulation classification [7]. 

In the past few years, there have been massive 
improvements and developments in neural network 
architectures and optimization algorithms. Deep neural 
networks have pushed performance boundaries of machine 
learning tasks in a variety of applications. This deep 
learning trend, which is quite popular in computer vision or 
text processing, is yet to be adequately explored and fully 
applied to complex temporal radio signal datasets. 
Moreover, in case of RF data, the type of samples that the 
network is to be trained on, and whether or not some kind 
of pre-processing on the time samples might improve 
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training performance needs to be investigated as well. In this 
work we propose a novel method of using I-Q time samples 
to form images with ‘Time and Discrete Orthonormal 
Stockwell Transform Domain Channels’ which are then 
used for training a convolutional neural network (CNN) for 
the task of radio modulation classification. This type of 
training on the network proves to be really efficient, 
especially when the number of training samples is less. 

The organization of this paper is as follow: Section II 
mentions some notable papers that have used deep neural 
networks for modulation classification, and also gives a 
brief background on the need for time-frequency analysis 
and the Stockwell transform. Section III presents an 
overview of the available radio machine learning datasets. 
Section IV presents the details about the proposed 
classification approach i.e. system model, Time & 
Stockwell Domain Channeling, the CNN architecture and 
the concept of Extended Output Classes. Section V presents 
the experimental results and their detailed analysis. Section 
VI concludes this paper. 

II. BACKGROUND 

A. Deep Architectures for RF Data Classification 

Applying deep learning to a problem like modulation 
classification involves selecting a network architecture and 
hyper-parameters, training the network to optimize weights 
that minimize loss, and applying the trained network to the 
problem at hand. [9] presents a survey of the various deep 
learning architectures inspired from computer vision and 
natural language processing that can be applied to the task 
of modulation classification. Some deep architectures that 
have found success in radio signal identification include 
Convolutional and Residual Networks [10] [11], Recurrent 
and LSTM networks [12] and Heterogeneous Deep Fusion 
Models [13].  

B. Need for Time-Frequency Analysis – The Stockwell 
Transform 

One major drawback of Fourier transform (FT) as a 
spectral analysis tool is that it produces only the time-
averaged spectrum, thus making it unfavorable for 
applications where local information is preferred (e.g., 
signal de-noising, compression, phase analysis) [14]. Thus 
in recent years, more advanced representations known as 
joint time-frequency representations have been adopted 
[15].  

The wavelet transform [16] is a time-frequency 
decomposition that applies local decomposition filters to a 
signal on multiple scales. But, even though the term “scale” 
can be approximately interpreted as “frequency,” there is 
no way to extract proper frequency information from the 
scale information [14]. 

The Stockwell transform (ST, also popularly known as 
the S-transform) [17] [18] [19] [15] is a time-frequency 
decomposition that provides absolutely referenced phase 
information. Here, the summation of the coefficients for a 
fixed frequency gives the exact Fourier coefficient for that 
frequency [14].  

Consider a one dimensional signal x(t). The ST of x(t) 
is defined as the FT of the product between x(t) and a 
Gaussian window function. 
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By properties of the Gaussian function, the relationship 
between S( τ, f ) and X( f ) (FT of x(t)) is given as 
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Hence, the summation of Stockwell coefficients along 
the time axis gives the FT of the signal. The original signal 
x(t) can be recovered by calculating the inverse FT of X(f) 
[14]. 

However, it is known that the Stockwell transform (also 
discrete ST) is highly redundant and thus it needs a large 
amount of time and storage space even for a moderately 
long signal. For example, a signal of length N, generates N2 
coefficients through the discrete ST. As a solution to reduce 
this redundancy, the time-frequency domain can be 
partitioned into N regions, and each region can be 
represented by one coefficient [14]. This is the strategy 
adopted by the discrete orthonormal Stockwell transform 
(DOST) [20], thus making its computation simpler. The 
DOST coefficients can be computed by taking the vector 
dot-product of the input signal with a set of N basis vectors, 
which gives it a computational complexity O(N2) [14]. Let 
a region in the time-frequency domain be described by a set 
of parameters: ν specifies the center of each frequency 
band, β is the width of the band and τ specifies the point in 
time. Using these parameters the kth basis vector is defined 
as 
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For k = 0, …, N-1. An algorithm to compute DOST 
through a fast method is presented in [14]. 

III. RADIO MACHINE LEARNING DATASETS 

All datasets used in this work are provided by DeepSig 
Inc., and are licensed under the Creative Commons 
Attribution – NonCommercial – ShareALike 4.0 License 
(CC BY-NC-SA 4.0). DeepSig has created some standard 
datasets which can be used by scientists and engineers for 
original and reproducible research. These datasets give 
scope to machine learning researchers to dive directly into 
new and important technical areas in radio signal 
processing without the need for collecting or generating 
new datasets [21].  

Dataset RadioML 2018.01A by DeepSig Inc. includes 
both synthetic simulated channel effects and over-the-air 
recordings of 24 digital and analog modulation types which 
has been heavily validated. This dataset was used in [11] 
which provides additional details and description of the 
dataset. Data are stored in hdf5 format as complex floating 
point values, with 2 million examples, each 1024 samples 
long. The included modulation classes are 32PSK, 
16APSK, 32QAM, FM, GMSK, 32APSK, OQPSK, 8ASK, 
BPSK, 8PSK, AM-SSB-SC, 4ASK, 16PSK, 64APSK, 
128QAM, 128APSK, AM-DSB-SC, AM-SSB-WC, 
64QAM, QPSK, 256QAM, AM-DSB-WC, OOK and 
16QAM [21]. 



IV. PROPOSED CLASSIFICATION APPROACH 

A. System Model 

Fig. 1 presents the complete system model that is being 
used for our classification approach. A RF I-Q image is a 
matrix containing fixed number of samples (1024 in this 
case) of the in-phase and quadrature-phase components of 
the received signal, arranged into rows. This 2x1024 
matrix/image serves as the input to the system model. The 
DOST block performs row-wise DOST (separately for I-
samples and Q-samples) on its input image and then takes 
the absolute values of each transformed complex values. 
The output of this block is another 2x1024 image which 
contains Time-Frequency Domain information about the I 
and Q samples. The input and output images of the DOST 
block are then fed into the Time and DOST Data 
Channeling block which forms 2x1024x2 images by 
assigning the time samples and DOST processed samples 
to different channels of its output image. This final image 
is then given as the input to the first layer of the trained 
convolutional neural network to perform the classification. 

 
Fig. 1. Proposed System Model of Using Time and DOST Data 
Channeled Images and Extended Output Classes for CNN-based Radio 
Modulation Classification. 

Before training the CNN, the entire pre-processing is 
done for all the training and validation I-Q time images as 
well, to convert them into their equivalent time and DOST 
channeled images. A detailed explanation of the 
architecture is presented in sub-section C of this section. 
The output layer of the CNN predicts one among the 
extended classes which are labelled according to both 
modulations as well as the SNR levels considered. This 
prediction of the extended class is then further processed in 
the Modulation Class Extraction block to extract the final 
modulation label for the input test data. 

B. Time and Discrete Orthonormal Stockwell Transform 
Domain Channeling for RF I-Q Images 

As described in the system model in sub-section A of 
this section, a new kind of pre-processing is incorporated 
in our approach to make the deep convolutional network 
learn signal features more prominently and efficiently. The 
output image of the DOST block contains all the time-
frequency information from which the network can learn 
more features.  

The physical intuition behind such pre-processing is 
that missing out on either the time data or time-frequency 
data could lead to loss of important features that the 
network could have learnt from a union of information of 
both the domains provided in a compact form. This led to 
the idea of creating two different channels in the same 

image, similar to RGB channels in a digital photograph. 
One channel holds the data from time domain I-Q samples 
and the other channel holds the data from the DOST 
processed time-frequency domain image. This gives the 
final image a depth of 2, and the output size is 2x1024x2. 
Moreover when the different kernels in a convolutional 
layer of the CNN train over such images, some of them 
might adapt to learn time features while some might adapt 
to learn time-frequency features. This was the inspiration 
behind the core idea of channeling multiple domain data. 
An example of the Time and DOST Domain Channeling 
for 16 I-Q time samples is shown below in Fig. 2. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. (a) Plots of In-phase and Quadrature-phase time samples of the 
signal. (b) Visual representation of the RF I-Q image as the Red-Channel.  
(c) Visual repsentation of output of the DOST block as the Green-
Channel. (d) Visual representation of the Time and DOST Domain 
Channeled Image in the form of an RGB image.  

(*Note: White represents zero value in (b) and (c), but black represents 
zero value for RGB in (d) i.e. White in (a) + White in (b) = Black in (d)) 

Fig. 2(d) is just an equivalent representation of the Time-
DOST Channeled image shown in a RGB format, and all 
the values in the blue channel are assumed zeros.  

C. The CNN Architecture and Extended Output Classes 

An eight layer convolutional neural network is 
proposed for the classification task in this work. It consists 
of 5 convolutional layers and 3 fully connected dense layers 
(including the output layer). The input image of size 
2x1024x2 is fed to the first convolutional layer (Conv) 
which has 128 filters, each of size 2x5. The activation 
function used is ReLU, and appropriate zero padding is 
done to keep the output of the first layer the same size as 
that of the input image. The second, third and fourth 
convolutional layers are identical to the first layer. The fifth 
convolutional layer is different from the other four only 
with respect to the filter size i.e. 2x7. The sixth and the 
seventh layers are fully connected dense layers (FC Dense) 



with 256 neurons each and activation function used is 
ReLU. The eighth layer is the output layer, a fully 
connected dense layer with number of neurons equal to 
number of output classes, and SoftMax is used as the 
activation function. Here 10 modulations are considered for 
classification with the SNR levels varying from -8 dB to +8 
dB in increments of 2 dB. Hence the number of extended 
output classes is 90 (No. of modulation classes multiplied 
by the No. of SNR levels). 

Average pooling of pool size 1x4 is performed after the 
1st and 2nd convolutional layer, and a pool size of 1x2 is 
used after the 3rd and 4th layers respectively. No pooling is 
performed after the 5th convolutional layer. The CNN 
layout is presented in Table I. Total number of trainable 
parameters is 1,861,850. 

TABLE I.  CNN ARCHITECTURE LAYOUT 

Layers Output Shape Parameters 

Input 2 x 1024 x 2 - 

Conv 1 (128x2x5), ReLU 2 x 1024 x 128 2,688 

Average Pooling (1x4) 2 x 256 x 128 - 

Conv 2 (128x2x5), ReLU 2 x 256 x 128 163,968 

Average Pooling (1x4) 2 x 64 x 128 - 

Conv 3 (128x2x5), ReLU 2 x 64 x 128 163,968 

Average Pooling (1x2) 2 x 32 x 128 - 

Conv 4 (128x2x5), ReLU 2 x 32 x 128 163,968 

Average Pooling (1x2) 2 x 16 x 128 - 

Conv 5 (128x2x7), ReLU 2 x 16 x 128 229,504 

FC Dense 6 (256), ReLU 256 1,048,832 

FC Dense 7 (256), ReLU 256 65,792 

FC Dense 8 (90), SoftMax 90 23,130 

 

The filters used in the convolutional layers are of sizes 
2x5 and 2x7. The main motive behind using 2-D filters is 
to allow the kernels to adapt to I and Q data separately.  

The dataset used in this approach is a part of the 
RadioML 2018.01A real world, over the air captured 
dataset provided by DeepSig Inc. [21]. 10 primary 
modulations have been extracted from amongst the 24 
modulation dataset for received SNR values ranging from 
-8 dB to 8dB with increments of 2 dB. These modulation 
classes include BPSK, QPSK, 8PSK, GMSK, 16APSK, 64 
APSK, 16QAM, 64QAM, AM-DSB-WC and FM. We 
shall refer to this dataset as ‘Master Dataset’ in the rest of 
this article. The reason for choosing these specific 
modulation schemes is their extent of application in 
modern day communication systems like broadcast radios, 
satellite communication, satellite television, WLAN 
standards, Wi-MAX standards and cellular standards. 

The concept of ‘Extended Output Classes’ is inspired 
from transfer learning. Each sample in the considered 
dataset is labelled with two tags i.e. the modulation tag and 
received SNR level tag. The general approach of using a 
CNN or any other deep neural network architecture for 
modulation classification on such a dataset has been 
classifying the input sample according to the modulation 
classes only. This has been presented in works [10] [11] 
and [9]. But in this proposed  ‘Extended Output Classes’ 
method, the CNN is trained to predict both the modulation 
tag as well as the SNR tag of the input sample. This is done 

by defining output classes with [Modulation, SNR] labels 
rather than just [Modulation] labels. For example, if the 
number of modulation classes is ‘M’ and the number of 
SNR levels considered in the dataset is ‘N’, then the 
number of extended output classes would be a product of 
M and N. The number of classes is increased by a factor N 
as compared to the general approaches. 

In this work, data samples of 10 modulations over 9 
SNR levels (-8:2:8 dB) are considered, hence instead of 10 
output classes/modulation labels, we have 90 extended 
output classes which are the [Modulations, SNR] labels. 
Hence the last fully connected dense layer has 90 neurons, 
as presented in Table I. The main idea behind classifying 
on an extended class size is to make the network understand 
signal features at different SNR levels in a more adaptable 
manner and to prepare it for the varying SNR scenarios that 
it might face during testing on an unknown sample. For this 
the network should first learn to recognize the approximate 
SNR scenario from the input sample, and then adapt itself 
accordingly for achieving a better overall classification 
accuracy. An example of this process is illustrated in Fig. 
3, which shows the extended [Modulation, SNR] output 
classes for a single modulation class ‘BPSK’. 

Finally, as the last part of the system model, a 
modulation extraction block is used to extract only the 
[Modulation] label from the predicted [Modulation, SNR] 
labels by the CNN. The output of modulation extraction is 
one among the 10 classes of modulations that have been 
considered. This block can be implemented using a simple 
many-to-one mapping function. 

 
Fig. 3. Extended Output [Modulation, SNR] Classes shown for a single 
modulation class ‘BPSK’. 

V. RESULTS AND ANALYSIS 

The model for the CNN architecture described in 
subsection C of section IV was first built in using Keras. It 
was then trained, validated and tested on the Master 
Dataset. It contains a total of 368,640 samples, each sample 
being a 2x1024 RF I-Q Image in our considered dataset. 
85% of the data samples are considered for the training and 
validation set, i.e. 313,344 samples, out of which 250,675 
samples belong to the training set, and 62,669 samples 
belong to the validation set. The rest 55,296 samples are 
used as the test set. Training is performed using a 
categorical cross entropy cost function and an Adam 
optimizer. 



We implement the training and prediction of our 
network in Keras [22] running on top of TensorFlow on a 
NVIDIA Cuda powered TESLA V100 16GB GPU in a 
Google Cloud Compute Engine Virtual Machine (VM) 
Instance. The VM instance was powered by a quad-core 
Intel Skylake based processor and 32GB of RAM. 

The network was trained and evaluated for four 
different cases to test the effectiveness of Time & DOST 
Domain Channeling (T-D-D-C) and Extended Output 
Classes (E-O-C).  Henceforward these two abbreviations 
shall be used in this article. In the first case, neither T-D-
D-C was performed on the data samples, nor were E-O-C 
used. Hence the neuron count in the final FC dense layer 
falls  to 10 from the previous count of 90. In the second 
case, T-D-D-C was not performed on the data samples, but 
E-O-C were used. In the third case, T-D-D-C was 
performed on the samples, but E-O-C were not used. Hence 
the network, in this case, is similar to that of the first case, 
with 10 neurons in the final FC dense layer. In the fourth 
and the final deciding case, T-D-D-C was performed on 
that data samples, as well as E-O-C were used. 

The classification accuracies achieved by the network 
for all the four cases, over all the 10 different modulations 
and for different values of received SNR levels are plotted 
in Fig. 4. The average overall classification accuracies 
achieved by the network for all the four cases, over all the 
10 different modulations and all values of received SNR 
levels are shown in Fig. 5. 

In the first case, which can be considered to be the 
baseline case, the network achieved a maximum of 80.49% 
classification accuracy at 8 dB SNR and overall accuracy 
of 64.47%. This can be considered to be a very average 
classification performance.  

In the second case the network achieved a maximum of 
90.41% classification accuracy at 8 dB SNR and an overall 
accuracy of 71.82%. This can be considered to be a good 
push to the CNN performance. As it can be observed from 
Fig. 4, in this case the accuracies for SNR levels greater 
than and equal to 0 dB have been boosted, while those for 
SNR levels below 0 dB have remained more or less similar. 
Thus it can be inferred that by using extension of output 
classes, the network seems to have learnt to distinguish 
between good and bad SNR scenarios by just observing the 
data samples, and hence the training process has taken 
place accordingly to optimize performance. 

In the third case the network achieved a maximum of 
88.07% classification accuracy at 8 dB SNR and overall 
accuracy of 73.89%. As it can be observed from Fig. 4, in 
this case, although the maximum achieved accuracy is less 
as compared to that of the second case, the overall accuracy 
is more. Moreover the classification accuracies at all the 
SNR levels seem to have been boosted as compared to that 
of the first case. Also for SNR levels less than 2 dB, the 
classification accuracies are more as compared to that of 
the second case. Hence it can be inferred that by using time 
& DOST domain channeling on the data samples, the CNN 
was able to extract and learn more features from both the 
time domain samples as well as the time-frequency domain 
samples which accentuated its overall performance. 

As a comparison with related papers, the results 
achieved in the second and third case in this paper already 
seems to outperform some particular results presented in 

[11]. It can be observed by comparing our results with Fig. 
7 and Fig. 8 of [11], that for almost the same number of 
training samples i.e. 250,675 in our case and 240,000 in 
[11], 10 modulations classes in our case as compared to 11 
classes in [11], and 1024 I-Q time samples in a single RF 
I-Q image in both works, our second and third case already 
perform much better with respect to classification 
accuracies as well as understanding SNR scenarios. Also, 
the maximum SNR considered here is just 8 dB as 
compared to 20 dB in [11]. This comparison is done while 
our best case i.e. the fourth case/ proposed method is yet to 
be analyzed. This is  done with an intention to show the 
novelty and effectiveness of E-O-C and T-D-D-C as 
independent methods to boost modulation classification 
performance.  

 
Fig. 4. Classification Accuracy vs. SNR for all the four cases of 
evaluation. 

 
Fig. 5. Overall Classification Accuracy for all the four cases of 
evaluation. 

In the fourth case the network achieved a maximum of 
97.30% classification accuracy at 8 dB SNR and an overall 
accuracy of 80.45%. As it can be observed from Fig. 4, the 
performance of the CNN, in this case, is far superior to that 
of all the other cases considered. T-D-D-C and E-O-C 
combine together to form a strong and effective method to 
make the CNN learn more time and time-frequency 
features strongly as well as help it to understand the quality 
of signals and adapt the optimization process according to 
varying SNR scenarios. The CNN training process took 84 
epochs, each lasting 45 seconds, with a batch size of 512 
samples. The validation loss was monitored during the 
training. 



 
Fig. 6. Confusion Matrix for 10 modulation classes at 8 dB SNR. 

To analyze the classification performance with  respect 
to each individual modulation class, the confusion matrix 
at 8 dB SNR is shown in Fig. 6. It is observed from the 
figure that a nearly clean diagonal  matrix is obtained at 8 
dB SNR. The network is able to identify all modulation 
classes separately with very high accuracy. Though there is 
some slight confusion between the classes 8PSK and 
64APSK, this might be because some of the constellation 
points are common to both the modulation schemes.  

VI. CONCLUSION AND FUTURE SCOPE 

Deep learning has seen a lot of development since the 
last decade. It has had unprecedented success in field like 
image classification, object recognition, natural language 
processing, unmanned vehicles, data analytics, and 
artificial intelligence. But its application in communication 
systems and devices is yet to be fully explored. This paper 
presents a way to use CNNs for the task of modulation 
recognition and also suggests a novel pre-processing 
method to improve upon their performance. This work 
might find scope in dynamic spectrum access and spectrum 
monitoring applications. As a continuation of this work in 
the future, other deep architectures like RNNs, LSTMs, 
ResNet structures for CNNs and fusion models as well as 
concepts of unsupervised learning can be explored in the 
domain of radio signal classification and identification. 
Also ensemble models trained individually for 
encountering samples at different SNR values can be 
explored to improve classification accuracy at low SNR 
scenarios. New pre-processing methods like T-D-D-C and 
suitable changes in the network architecture like E-O-C 
proposed in this paper can be further explored to accentuate 
performances of deep networks in specific scenarios. 
Hardware implementation solutions like FPGA 
acceleration of CNN as well as acceleration on dedicated 
low power edge computing devices can also be explored. 
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