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Abstract—Cloud computing is an emerging computing
paradigm, where cloud resources are available according to
the pay-per-use pricing model and can be scaled dynamically
depending on the application needs. Noticeably, many real-time
applications that demand both time and functional correctness
are moving to cloud. So, it requires efficient use of cloud resources
to support applications need. In this context, task scheduling is a
well-known technique to achieve the performance improvement
of applications running in clouds. Again, execution time and
execution cost play a vital role in deciding an appropriate VM for
execution of a real-time task. In this paper, we formulate the real-
time task scheduling problem as a multi-constraint optimization
problem with time and cost constraint. Further, proposed a
solution through time and cost-efficient best fit (TCA : BF ) and
first fit (TCA : FF ) scheduling algorithms. Extensive simulation
is performed to validate the superiority of the proposed approach
compared to some existing ones.

Index Terms—Cloud computing, Deadline, Execution time,
Execution cost, Real-time task

I. INTRODUCTION

Nowadays, many applications like healthcare system, video
streaming, transaction system demand output within a speci-
fied timing constraint or deadline. The infrastructure used to
develop such systems must provide high computing capability,
ample storage volume, and reliable communication so that the
timing constraint of the task can be met. For example, a health
monitoring, and analysis framework enables a user (healthcare
professionals and patients) to collect and disseminate health
data anytime and from anywhere. The pervasive healthcare
system is helpful for persons who need continuous monitoring
but leave far away from their service provider, individuals
facing difficulty in attending frequent therapy sessions, etc.
Despite several advantages, the framework designed for health-
care system faces several challenges concerning scalability
and economy [1]. Cloud computing plays a vital role in
overcoming these issues. The evolution of cloud computing
and virtualization technologies facilitates services with varying
needs to operate in a virtualized environment.

Cloud computing is a widely used computing paradigm,
combined with the benefits of reducing cost by sharing
computing and storage resources, reliability, security, and
scalability, etc. Cloud computing is a variation of utility and
distributed computing which follows a pay-as-you-go pricing
model to deliver services to the user. [3]. A cloud service
model can be Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). IaaS deals

with cloud infrastructure and associated middleware, PaaS
provides an abstract platform to develop applications, and SaaS
provides support for remote software Services [4].

Task scheduling is an efficient technique to achieve a perfor-
mance improvement of the cloud system. The task scheduling
decision must guarantee efficient use of cloud infrastructure
with minimum task execution cost possible while assuring the
application’s quality of service (QoS) constraints. But, such
decisions are generally hard to take as it depends on many
factors like cost, energy consumption, pricing model, etc.
Although there are an infinite amount of cloud resources, the
economic cost of leasing cloud resources is a major concern
for cloud users and cloud service providers [10], [11]. Usually,
the cost incurred for usage of resources is a function of the
time unit [11]. Cloud users are charged by an hourly-based,
monthly or yearly subscription-based pricing model. Various
tasks coming to the cloud demand a particular type of Virtual
Machine (VM). For instance, Amazon EC2 offers many VM
instances specific for computing-intensive, memory-intensive,
and storage-intensive task [12]. The cloud scheduler must
match the heterogeneous tasks to the best-fit VM instance for
execution. The best-fit VM instance is chosen based on the
objective of task scheduling like energy minimization, cost
minimization, time minimization and so on.

Task priority or urgency strategy based on the weight of task
attributes has a notable capability for efficient task scheduling
and improved throughput of the system. There are several
methods to assign a priority value to a task. In [13] the
priority of a request is defined concerning task load and its
execution time. Each task is assigned a priority level such as
low, medium and high through a polynomial weighting scheme
in [14]. Tasks are prioritized according to QoS deficit, and
the process is better known as Largest Deficit First (LDF)
[15]. This paper proposes a time and cost efficient (TCA)
scheduling algorithm to meet the challenges as mentioned
earlier for the execution of heterogeneous real-time tasks in
the cloud environment. Our approach took into account the
heterogeneity of computing resources (VM) as well as task
and modeled task scheduling problem as a multi-constraint
optimization problem. Specifically, we used the weighted sum
method for the selection of best fit VM to execute a task. Our
main contribution includes

• We proposed a scheduling algorithm named TCA to
minimize the execution cost and execution time of a task



while meeting the deadline constraint. It considers both
task and VM heterogeneity for mapping a task to an
appropriate VM.

• We analyze the proposed algorithm through extensive
simulations and experiments. We consider guarantee ra-
tio, average execution cost and time under various scenar-
ios to show the effectiveness of TCA over some existing
schemes.

The paper is structured as follows: Section II reviews
the work done by various researchers. Cloud system model
is discussed in Section III. Section IV explains the TCA
scheduling algorithm. Numerical results and conclusions are
presented in Section V and Section VI respectively.

II. RELATED WORK

A variety of task scheduling methods have been proposed
by researchers, in this paper, we mainly focus on task with
deadline constraint. Authors in [1] designed a middleware for
ECG data analysis to maximize cloud resource utilization.
Sahni et al. [3] presented a cost-effective scheduling algorithm
for scientific workflow in the public cloud. They considered
the performance variation of VM and instance acquisition
delay to schedule workflow with the aim of minimizing
the overall execution cost while guaranteeing user-defined
deadline. Sahoo et al. [4] presented best fit Earliest Deadline
First (best fit) and first fit Earliest Deadline First (first fit EDF)
algorithms for real-time tasks in the cloud, aiming maximized
guarantee ratio, utilization of VM and throughput. Stavrinides
et al. [5] proposed a heuristic to schedule real-time workflow
in the cloud. They employed bin packing techniques in their
scheduling approach to meet the objectives (i) minimized
execution time and cost, (ii) applications deadline satisfaction.
Calheiros et al. [6] designed an architecture for dynamic
cloud resource provisioning and cost-efficient scheduling of
deadline-based applications. Further, authors have proposed a
novel billing strategy based on user’s share on the utilization of
cloud resources. Su et al. [7] proposed a scheduling algorithm
that uses Pareto-dominance concept to select the most cost-
efficient VM. Van den Bossche et al. [8] presented a cost-
efficient scheduling mechanism for deadline constrained batch
type applications. Hu et al. [9] presented Flutter a scheduling
mechanism for big data jobs in order to reduce completion
time and network cost.

Li et al. [13] introduced a cost-efficient scheduling tech-
nique for hybrid cloud workload to meet the response time
and deadline constraints. Besides queuing analysis is done to
allocate resources based on predictions of resource request
of interactive services. In [14] evaluation and comparison of
several dynamic mapping methods for priority and deadline
based tasks in a heterogeneous working environment. Du
et al. [15] studied different scheduling policies to support
soft real-time application in the cloud. They developed outer
bound on feasible QoS region and inner bound on policies
based on dynamically prioritizing application’s task. In [16]
authors have discussed MapReduce framework and scheduling
algorithms for the real-time task. Security is also one of the

TABLE I
TASK SCHEDULING OBJECTIVES

Research Works Objectives Constraints
Sahni et al. [3]

• Minimize execution cost
Deadline

Stavrinides et al. [5]
• Minimize execution time and

cost

Deadline

Calheiros et al. [6]
• Minimize cost

Deadline

Van den Bossche et al.
[8] • Minimize cost

Deadline

Hu et al. [9]
• Minimize network cost and

completion time

NA

Li et al. [10]
• Minimize execution cost

Deadline, Risk rate

Li et al. [13]
• Minimize cost

Deadline, Response
time

most significant challenges in the cloud environment. In this
context, Li et al. [10] proposed SCAS, security and cost aware
scheduling algorithm based on Particle Swarm Optimization
(PSO) for scientific workflow in clouds. Researchers in [2]
presented an entropy-based technique to deploy workflow
reliably.

Table I shows various scheduling objectives and constraints
considered by researchers. From the literature survey, we can
infer that time and cost are important parameters, specifically
for deadline based tasks. Most of the paper give solution
for single objective or constraint real-time task scheduling
problem, and very few articles focus on the multi-constraint
task scheduling problem. In this regard, we designed an
algorithm for the multi-constraint real-time task scheduling
problem.

III. SYSTEM MODEL

Here, we assume a Heterogeneous Cloud System (HCS)
consists of n number of VMs and m number of real-time
tasks in a particular time instant.

In this study, we consider a set V = {v1, v2, ..., vn}
of heterogeneous VMs. The VM heterogeneity is explained
through different speed and cost. Each VM vj is characterized
by its speed sp(vj), which is measured in terms of Million
Instructions Per Second (MIPS) and execution cost ζj per time
unit.

Let T = {t1, t2, ..., tm} is the task set. Each task ti is
characterized by arrival time a(ti), length or size l(ti) and
deadline dl(ti). The length of task is measured in terms of
Million Instructions (MI). The task heterogeneity is a function
of its size, arrival time and deadline etc. Let st(i, j) is the start
time of task ti on VM vj . It is computed as

st(i, j) = max{a(ti), ft(p, j)} (1)



where ft(p, j) is the finish time of task tp on vj . We assume
that tp is immediate predecessor of task ti on vj . The execution
time et(i, j) of a task ti on VM vj is calculated as

et(i, j) =
l(ti)

sp(vj)
(2)

The finish time ft(i, j) of ti on vj can be computed as

ft(i, j) = st(i, j) + et(i, j) (3)

The ft(i, j) of a task ti determine whether the task ti meet
it’s timing constraint or not. If ft(i, j) ≤ dl(ti), then task’s
deadline can be met otherwise not.

The scheduler shown in Fig. 1 comprises of a task priority
calculator, a real-time controller, and a resource allocator.
The primary job of the scheduler is to allocate VMs to
incoming tasks from the users. The resource allocator uses
this information to assign VMs for executing the task.

.

.

.

Scheduler

Users

t1

t2

tm

VM Set

Fig. 1. Scheduling Model

When a new task arrives, the scheduler performs the fol-
lowing steps:

• First, the real-time priority calculator assigns different
priority values to the incoming task according to the
deadline and worst-case execution time (WCET ).

• The tasks sorted by the priority value facilitate the
scheduling operation.

• The real-time controller decides whether the task can
meet its deadline or not. If there is no VM that can finish
the task within its timing constraint, then the real-time
controller informs the resource allocator to add new VMs.

• If task’s timing requirement can be met then the resource
allocator assign task to an appropriate VM.

Both real-time controller and resource allocator work together,
first to meet task’s timing requirement and then reduce the
execution cost by assigning it to the best fit VM.

IV. TIME AND COST EFFICIENT ALGORITHM

The scheduling algorithm presented in Algorithm 1 works
in two phases. The first phase (Phase 1:) consists of selecting
a task based on the priority value assigned by the task priority
calculator module. The second phase (Phase 2:) is about VM
selection based on the utility function. Details of both the
phases are discussed below:

A. Phase 1:

In this phase scheduler first assigns priority to the incoming
tasks, where priority pr(ti) of the task ti is calculated as

pr(ti) =
1

sl(ti)
(4)

where slack time sl(ti) is computed as

sl(ti) = |dl(ti)−WCET | (5)

WCET is defined as the maximum execution time of ti on
a machine, i.e., WCET = max(et(i, j)). A lower value of
denominator in Equation 4 indicates a higher priority for task
ti.

Algorithm 1 : Pseudo code of TCA : BF

Input: Arriving task set T , Speed and execution cost of VM
set V;

Output: SCH; /* Schedule plan for arriving task */
1: fTAG ←− FALSE;
2: Phase 1:
3: for each task ti do
4: Compute priority value pr(ti) using Equation 4;
5: end for
6: Sort the tasks by their priority value in descending order.
7: Phase 2:
8: for each task ti in the sorted task list do
9: for each VM vj in the system do

10: Compute start time st(i, j) by Equation 1, execu-
tion time et(i, j) by Equation 2 and finish time ft(i, j)
by Equation 3;

11: end for
12: for each VM vj in the system do
13: if ft(i, j) ≤ dl(ti) then
14: fTAG ←− TRUE;
15: Compute utility function U(i, j) using Equa-

tion 8;
16: end if
17: end for
18: if fTAG == FALSE then
19: Add new VMs.
20: end if
21: if fTAG == TRUE then
22: Based on utility function select best fit vj for task

ti;
23: SCH ←− 〈ti, vj〉;
24: end if
25: end for

B. Phase 2:

In this phase, an appropriate VM is chosen for executing
a task from a set of VMs by solving our multi-constraint
optimization problem. To solve the problem, we define a utility
function based on both execution cost and execution time. But,
both the time and cost constraints considered in our problem
has a different measurement unit. Both metrics are normalized



to get a unit less value to eliminate computational problems
caused by different measurement units. The normalized values
are computed as

nΓ(i, j) =
Γmx

et(i, j)
and nζ(i, j) =

ζmx

ζ(i, j)
(6)

where Γmx represents the maximum execution time of a task
ti on VM vj , whereas ζmn indicates maximum execution cost
of a task ti on VM vj . Let ζj is the processing cost of vj
per time unit. Then the cost incurred for executing ti on vj is
calculated as

ζ(i, j) = ζj × et(i, j) (7)

The utility function for VM selection for task ti is formulated
as

U(i, j) = α× nΓ(i, j) + (1− α)× nζ(i, j) (8)

A high value of α indicates execution time aware scheduling
whereas a low value indicates cost-aware scheduling. Here,
we give equal priority to both time and cost, i.e., α = 0.5.

The time and cost-efficient scheduling algorithm
TCA : BF (Algorithm 1) used a heuristic approach to
assign each task to a VM in a way to aggressively guarantee
task’s deadlines while improving time and cost efficiency. In
the first phase, it computes the priority value for each task
ti and sorts them based on this value (see lines 3-6). In the
second phase, it computes the start time, execution time and
finishes time of task ti on each VM vj . If deadline constraint
of task ti can be satisfied by a VM, then it calculates the
utility function for executing task ti on VM vj (see lines
9-17). If ti cannot be assigned to available VMs, then add
new VMs (see lines 18-20). If ti can be allocated, then it
selects best fit VM to execute ti for TCA : BF . Similarly,
for TCA : FF it selects first fit VM to execute ti. The final
assignment is stored in SCH (see lines 21-24).

Theorem 1. The time complexity of TCA : BF algorithm is
O(mlog(m) + mn), where m is the number of tasks, n is
the number of VMs.

Proof. The time complexity of calculating a task’s priority
value is O(m) (lines 3-5). It takes O(mlog(m)) to sort
tasks in descending order (line 6). The time complexity
of obtaining task ti’s start time, execution time and
finish time on all the VMs is O(n) (lines 9-17). The
time complexity of finding the best fit (minimum utility
value) VM is O(n). Rest lines are computed in O(1)
computation time. So, the time complexity of TCA : BF
algorithm is O(m) + O(mlog(m) + O(m)(O(n) + O(n)) =
O(mlog(m) +mn).

V. NUMERICAL RESULTS

To illustrate the performance improvement gained by TCA
we quantitatively compare it with HEFT and CAA algo-
rithms. For both the algorithms tasks are assigned priority
based on Equation 4. The algorithms are briefly described as
follows:

Heterogeneous Earliest Finish Time (HEFT ). selects a VM
to execute a task, which has the earliest finish time.

Cost Aware Algorithm (CAA). Differing from TCA : BF ,
it selects a VM that has the least execution cost for a task.
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We use guarantee ratio (GR), average cost (AC) and
average execution time (AET ) as the performance metrics to
evaluate the system performance. The performance metrics are
defined as follows:
GR. It is defined as the ratio between total task count

satisfying deadline constraint and total task count.
AC. It is defined as the average cost required to execute a

set of task satisfying the specified constraints.
AET . It is the average execution time of all the tasks in

the system.
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Fig. 3. AET Vs Task Count

We performed a group of experiments to show the per-
formance comparisons of the algorithms in terms of perfor-
mance metrics. The detailed simulation settings are given



as follows. We assume that the task arrival rate follows a
Poisson distribution. The deadline of the task is calculated
as dl(ti) = a(ti) + baseD where, baseD is in uniform
distribution U(5, 10). Size of the task is in uniform distribution
U(3000 − 8000) MI. Each VM speed is set in the range
[2000 − 4000] MIPS. The cost of a VM is set between
[0.40 − 5.50]$ [2]. We assume that the cost of the VM is
a function of its speed that means higher speed VM is costlier
as compared to lower speed VM.

We can infer from Fig. 2 that as the task count increases the
average cost value also increases. The increase in task count
raises the busy time of a VM which in turns increases the
computation cost. Besides, it can be found that TCA : BF
and TCA : FF performs better than the other algorithms. This
can be attributed to the use of utility function. Utility function
helps to select a VM that is best suited concerning both cost
and time as opposed to time only and cost only algorithms.
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From Fig. 3, it can be observed that the average execution
time for TCA : BF and TCA : FF is less compared to other
algorithms. As the task count grows, the average execution
time also rises. But TCA : BF and TCA : FF have better
performance, as VM selection depends on both time and cost.
Since HEFT selects VM based on earliest execution time, it
has reduced AET value compared to CAA.

Fig. 4 demonstrates that all the algorithms have very little
variation in guarantee ratio regardless of the task count. This is
because infinite cloud resources enable the scheduler to start
up new VMs as the task count increases. However, infinite
cloud resources don’t guarantee the successful completion of
all the tasks. Besides, it can be observed that TCA : BF and
TCA : FF have better guarantee ratio than other algorithms.

VI. CONCLUSION

Driven by the popularity of moving to the cloud, an in-
creasing number of real-time (deadline-based) applications are
hosted in the cloud. However, the heterogeneity in security,
reliability, and cost of a VM in the cloud system, make the

scheduler struggle in choosing an optimal VM for executing
a user task. In this paper, we addressed the muti-constraint
problem concerned with response time and execution cost
for the successful execution of a set of real-time tasks. To
achieve the objectives, we introduced time and cost-efficient
scheduling algorithm named TCA : BF and TCA : FF ,
where VM selection is made based on the solution of the
multi-constraint problem. In our future work, we will focus on
the Pareto-optimal concept to solve a multi-constraint problem
in the HCS.
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