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Abstract — This paper is aimed to develop and 

compare precise and applicable models based on 

Regression Tree (RT) and Multiple Linear Regression 

(MLR) to predict Mean Fragment Size (MFS). In this 

regard, 35 blasting operations were investigated and the 

most influential factors on the fragmentation, i.e. Hole 

diameter, Depth of hole, Spacing, Burden, Stemming 

length and Specific charge were measured. Also, the 

Mean Fragment size values for the considered blasting 

events were carefully measured using WipFrag image 

analysis software. Regression Tree analysis was done 

using RapidMiner Studio and Multiple Regression 

analysis was done using computer-aided solution SPSS 

(Statistical Package for the Social Sciences) to analyze 

the data obtained from the study areas. Seven 

parameters were input into the regression tree and 

multiple linear regression analysis to generate the model. 

Mean fragment size (MFS) out of the seven input 

parameters was dependent variable and the remaining 

six such as Drill hole diameter (HD), Stemming length 

(ST), Burden (B), Spacing (S), Specific charge (QC) and 

Depth of hole (DH) were input as independent variables. 

The reliability of the developed models was checked 

using several performance indices, i.e. R2, MEDAE and 

RMSE. It is found that the performance indices obtained 

by the RT model are better compared to the MLR 

model. 

Keywords— Fragmentation, Blasting parameters, Regression 

tree, Multiple Linear Regression.  

I. INTRODUCTION  

     The blasting activities play an essential part in the 

financial matters of the mining industry. The blasted rock 

muckpile and fragment sizes are very important since they 

affect the downstream processes from hauling to grinding. 

To minimize the cost of production, optimal fragmentation 

from a properly designed blasting pattern has to be achieved 

[1]. Large fragments adversely affect the loading and 

hauling equipment and increase the frequency of sorting of 

oversize boulders and secondary blasting, thereby increasing 

the cost of mining. Similarly, generation of fines is also 

undesirable as involves excessive explosive consumption. It 

is, therefore, desirable to have a uniform fragment 

distribution, avoiding both fines and oversized fragments to 

optimize the overall cost of mining. The rock fragmentation 

obtained as an outcome of blasting operations said to be 

optimum when it contains the maximum percentage of 

fragments in the desired size range [2]. To achieve an 

optimum rock fragmentation a blast with optimized 

controllable parameters should be designed so that the 

effects of the uncontrollable parameters could be minimized. 

The controllable parameters for optimum fragmentation can 

be fixed after induction of trial blasts in a mine and 

quantification of fragmentation. Quantification of 

fragmentation refers to the measurement of fragmentation in 

order to predict the necessary corrections in the blast design. 

These corrections when applied to the blast design results in 

almost acceptable fragmentation [3].  

  

II. REGRESSION TREE MODEL 

     Decision tree (DT) is one of the nonparametric 
classification methods which can introduce a pattern 
classification of observations utilizing a simple technique 
[4]. The developed model by RT is defined as a simple and 
understandable structure for decision-making. In 
classification, recognition and estimation, RT is considered 
as a simple method. Nevertheless, it can be used for solving 
problems and instead of some complicated techniques like 
ANN. DT is shown as a series of questions where every 
equation is defined by a parameter/variable. A typical tree in 
this technique is designed by roots, branches, leaves and 
nodes. A graph of DT comprises nodes and branches which 
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are shown by circles and their connections, respectively [5]. 
In a DT process, a parameter is chosen as root or the first 
node and subsequently, the first node is divided into several 
internal nodes based on a series of features. Generally, a DT 
can be drawn from the top to down where the root of RT is 
located at the top. The end of a chain which comprises root, 
branch and node is named as leaf [6]. Splitting operation in 
DT is applied by one of the predictor/input parameters, and 
range of them is selected based on minimization of mean 
square error (MSE). When the output of a system is a 
discrete set of values, it is named as classification tree and 
when the output of a system is a real set of values, it is 
named as RT [7]. Figure 1 schematically indicates a typical 
structure of a DT.  
 

 
Fig 1: Structure of Decision Tree 

 

Among all algorithms for determining DTs, classification 
and regression tree (CART) is considered as one of the 
famous ones and it has been widely utilized in 
approximating engineering problems (e.g. Tiryaki 2008). 
Hence, CART algorithm is applied for determining DT in 
the present study. CART algorithm was proposed by 
Breiman et al. (1984) [8] for determining purposes of DT. It 
is a rule-based method which can generate binary tree to 
recursively partition the predictor space into subsets. 
Breiman et al. (1984) mentioned that although CART 
algorithm was developed for quantitative variables, it can be 
utilized for any types of variables. It is worth mentioning 
that there are no initial assumptions regarding the 
relationships between parameters in CART algorithm. In 
this study, the output of the system is considered as real 
value, so that, RT should be applied to solve the problem. 
After the first node which is the root of the system 
(comprising of all data), each node is divided into two 
subsets. Each node is included till end leaf and model output 
can be predicted by end of each step. This process is 
repeated until the termination criteria are met.   
 

III. MULTIPLE LINEAR REGRESSION MODEL  

     The MLR is one of the most well-known methods to fit a 
linear equation between one or more independent variables 
and one dependent variable. This method is extensively used 
to estimate some problems in the fields of rock and 
geotechnical engineering [9]. Generally, the MLR model 
can be formulated as follows:  

 

         Y= P+ P1X1+ P2X2+ P3X3+………+ PnXn            (1) 

Where Xi (i=1,...., n) and Y are independent and dependent 
parameters, respectively. In addition, Pi (i=1,...., n) denote 
regression coefficients. In the present study, the MLR model 
was utilized and developed to predict mean fragment size. 
Developed MLR equation for the prediction of MFS is 
shown in equation (2).  

IV. IMAGE ANALYSIS USING WIPFRAG 

The WipFrag image analysis software uses the technique of 
analysis of a digital image of the blasted rock with 
granulometry system to predict the grain size distribution in 
the muck pile [10]. A camcorder acquires the images of the 
muck pile in the field. A scaling device is used in each view 
to reference the sizing. The muck pile is photographed or 
videotaped and this image is transferred to the WipFrag 
system. The broken rock image is transformed into a particle 
map or network. Network areas are converted into volumes 
and weights and the resulting data is displayed as a graph. 
The fidelity and speed of fragment edge detection allow 
fully automatic remote monitoring at a rate of one image per 
3 to 5 seconds. More fragments are resolved, over a greater 
size range. WipFrag allows comparing the automatically 
generated net against the rock image. The fragment 
boundaries are analyzed efficiently using Edge Detection 
Variables (EDV). Inaccuracies can be corrected by manual 
editing with a mouse to improve edge detection. In the 
present study, using WipFrag image analysis software, 35 
blasting muckpile photographs was analyzed in a system to 
obtain mean fragment size.  

 

V. EXPERIMENTAL SITE DETAILS 

     To make accurate predictions of the fragment size, an 
applicable model based on multiple linear regression (MLR) 
is developed. In this regard, 35 blasting operations were 
investigated from two mines i.e. Dongri Buzurg mine, 
MOIL and Sonepur Bazari Project, ECL. The most 
influential factors on the fragmentation, i.e. hole diameter, 
blast-hole length, spacing, burden, stemming length, specific 
charge were measured. 

A. Dongri Buzurg Mine (MOIL) 

     Dongri Buzurg mine is located in the village Dongri 
Buzurg, Balapur Hamesha and Kurmuda in Tumsar Tahsil 
under Bhandara district of Maharashtra state.  It is in the 
Northeastern part of Bhandara district, in the state of 
Maharashtra and it is about 120 Kms from Nagpur. The 
manganese ore horizon occurs as a continuous bed at the 
stratigraphic contact of overlying Sitasongi formation and 
the underlying Munsar formation, on the reversed limb of a 
regional anticline within the Balapur Hamesha leasehold 
area of the mine. Considering the mineralization and 
disposition of manganese ore, it has been proposed to work 
with diesel hydraulic shovel and rear dumper combination. 
Horizontal slicing method of mining has been adopted in 
this mine for both extraction of ore and development. A 
diesel hydraulic backhoe in combination with existing 35T 
rear dumper and diesel-hydraulic backhoe in combination 
with 60T rear dumper have been proposed. Drill hole 



diameter of 110mm has been proposed for muck generation 
and 320 HP Dozers are proposed for bench preparation. 
Auxiliary equipment has also been proposed to ease the 
mining operations. Figure 2 shows the overview of Dongri 
Buzurg Mine, MOIL, India. 

 
Fig 2: Overview of Dongri Buzurg Mine, MOIL, India. 

B. Sonepuri Bazari Project (ECL) 

 

Sonepur Bazari Project of Eastern Coalfields Limited is 
located in the Eastern part of Raniganj Coalfields. The 
Grand Trunk Road passes at 14km west of the project. Four 
coal seams viz. R-IV, R-V, R-VI and R-VII are mainly 
exposed in the mine. Presently, seams R-V and R-VI are 
being extracted by the opencast method of mining. The mine 
is producing about 3.5Mt of coal and removal of overburden 
is about 12 million cubic meters. The average stripping ratio 
of the mine is 4.72 m3 per tonne coal produced. The total 
reserve of the project is 188.26 Mt. Figure 3 shows the 
overview of Sonepur Bazari Project, Eastern Coalfields 
Limited, CIL, India. 

 

 
Fig 3: Overview of Sonepur Bazari Project, Eastern Coalfields Limited, 

CIL, India 
 

VI.  PREDICTION OF MEAN FRAGMENT SIZE USING RT 

AND MLR MODEL  

     To make accurate predictions of the mean fragment size 
(MFS), an applicable model based on Regression tree (RT) 
and Multiple Linear Regression (MLR) are developed. In 
this regard, 35 blasting operations were investigated and 
the most influential factors on the fragmentation, i.e. hole 

diameter, blast-hole length, spacing, burden, stemming 
length, specific charge were measured. Also, the mean 
fragment size values for the considered blasting events 
were carefully measured using WipFrag image analysis 
software. Regression Tree analysis was done using 
RapidMiner Studio and Multiple Linear Regression 
analysis was done using computer-aided solution SPSS 
(Statistical Package for the Social Sciences) to analyze the 
data obtained from the study areas. Mean fragment size 
(MFS) out of the seven input parameters was dependent 
variable and the remaining six such Drill hole diameter 
(HD), Stemming length (ST), Burden (B), Spacing (S), 
Specific charge (QC) and Depth of Hole (DH) were input as 
independent variables. Descriptive statistics of parameters 
are given in tableI1 below. 
 
TABLE I.  DESCRIPTIVE STATISTICS OF PARAMETERS 

Parameter Mean Std. Deviation N  

MFS (mm) 129.006 90.174 35 

HD (mm) 174.690 69.999 35 

ST (m) 3.680 0.984 35 

B  (m) 3.643 1.204 35 

S (m) 4.257 1.452 35 

QC (Kg/m3) 0.518 0.188 35 

DH (m) 9.477 3.478 35 

 

A. Prediction of Mean Fragment Size using RT 

     This section presents the modeling procedure of the RT 
model to predict the mean fragment size. As the first step of 
simulation works, the most influential parameters on Mean 
fragment size (MFS) i.e. Drill hole diameter (HD), 
Stemming length (ST), Burden (B), Spacing (S), Specific 
charge (QC) and Depth of Hole (DH) are selected. In this 
study, the developed models by RT were built with help of 
RapidMiner Studio 9.0. Two termination criteria including 
the number of interval and max tree depth were considered 
in designing RT models. Figure 4 displays the developed 
RT model to predict the mean fragment size showing and 
Specific charge (QC) parameter as a root node. 
 

B. Prediction of Mean Fragment Size using MLR 

     This section presents the modeling procedure of the 
MLR model to predict the mean fragment size. As the first 
step of simulation works, the most influential parameters on 
Mean fragment size (MFS) i.e. Drill hole diameter (HD), 
Stemming length (ST), Burden (B), Spacing (S), Specific 
charge (QC) and Depth of Hole (DH) are selected. In this 
study, the developed models by MLR were built with help 
of computer-aided solution SPSS (Statistical Package for the 
Social Sciences). Mean fragment size (MFS) out of the 
seven input parameters was dependent variable and the 
remaining six such as Drill hole diameter (HD), Stemming 
length (ST), Burden (B), Spacing (S), Specific charge (QC) 
and Depth of Hole (DH) were input as independent 
variables. Table II displays the developed MLR model to 



predict mean fragment size and estimation multiple linear 
regression model for the Mean fragment size (MFS) is 
written as in equation (2): 

 

 

Table 2: Computation for the model, Dependent variable: MFS  

 

Parameter 

Unstandardized 

Coefficients 

 

t 

 

Sig. 

 

Tolerance 

B Std. 

Error 

(Constant) -255.173 42.131 -6.057 0.000  

HD -1.449 0.455 -3.181 0.004 0.032 

ST 20.179 20.933 0.990 0.331 0.076 

B 71.614 19.404 3.691 0.001 0.059 

S 44.406 22.299 1.991 0.056 0.031 

QC 452.520 58.136 7.784 0.000 0.269 

DH -13.045 4.060 -3.213 0.003 0.162 

Dependent Variable: MFS 

 

MFS = -1.449(HD) + 20.719(ST) + 71.614(B) + 44.406(S) 

+ 452.520(Qc) – 13.045(DH) – 255.173                            (2) 

 

Explanation of Parameters and their Coefficients: 

 
a) Stemming length (ST) (20.719): This value 

indicates that as the stemming length increases by 
one unit, the mean fragment increases by 20.719 
units. This interpretation is true only if the effects 
of other parameters are held constant. The t-test 
(0.990) associated with this value shows that 
Stemming length as a significant effect on mean 
fragment size.  

 

b) Burden (B) (71.614): This value indicates that as 
the burden increases by one unit, the mean 
fragment increases by 71.614 units. This 
interpretation is true only if the effects of other 
parameters are held constant. The t-test (3.691) 
associated with this value shows that it is 
significant.  

 
c) Spacing (S) (44.406): This value indicates that as 

the spacing increases by one unit, the mean 
fragment increases by 44.406 units. This 
interpretation is true only if the effects of other 
parameters are held constant. The t-test (1.991) 
associated with this value shows that it is 
significant. The spacing between the holes is 
making a significant contribution to the model.  

 
d) Specific charge (QC) (452.520): This value 

indicates that as the specific charge increases by 
one unit, the mean fragment increases by 452.520 
units. This interpretation is true if the effects of 
other parameters are held constant. The t-test 
(07.784) associated with this value shows that it is 
significant. 

 
e) Depth of hole (DH) (-13.045): This value indicates 

that as the borehole depth increases by one unit, the 
mean fragment decreases by 13.045units. This 
interpretation is true only if the effects of other 
parameters are held constant. The t-test (-3.213) 
associated with this value shows that it is 
significant. Borehole depth is making significant 
contribution to the model.  

 



VII. EVALUATION OF THE PREDICTIVE MODELS 

     This section is aimed to measure the accuracy of the 
proposed predictive models. In this regard, RT and MLR 
models are developed in this paper. In these models, the 
measured mean fragment size values are considered to be 
the product of the six input parameters, namely HD, S, B, 
ST, QC and DH. Some performance indices, i.e. median 
absolute error (MEDAE), R2 and Root Mean Square error 
(RMSE), were used for evaluating the accuracy of models. 
Theoretically, RMSE, MEDAE and R2 equal to 0, 0 and 1 
indicate the best approximation. Performance indices of the 
predictive models for datasets are given in Table III below. 
 

Table III: Performance indices of the predictive models for datasets 
 

Predictive Model 
Network Results 

MEDAE R2 RMSE 
RT 16.34 0.941 21.618 

MLR 25.33 0.885 30.183 

 
In this Table, when considering the obtained results of the 
RMSE for the RT model and MLR model, the values are 
21.618 and 30.183 respectively. These values reveal a 
higher accuracy of the RT model. On the other hand, when 
considering the obtained results of the R2 for the RT model 
and MLR model, the values are 0.941 and 0.885 
respectively. These values demonstrate higher conformity of 
the RT model. In order to have a better comparison, the 
values of measured and predicted mean fragment size using 
MLR and RT models are plotted for all datasets, as shown in 
Figs. 5 and 6. What is clear from Table 4 and Figs. 5 and 6 
is that the performance capacity of the RT model is higher 
than the MLR model. 
 

 
Fig 5: Measured versus predicted mean fragment size values by RT model 

 

 
Fig 6: Measured versus predicted mean fragment size values by MLR 

model 

VIII. CONCLUSIONS 

     In the present paper, RT and MLR models were 
developed for the prediction of mean fragment size caused 
by blasting in Dongri Buzurg mine, MOIL and Sonepur 
Bazari Project, ECL. The objective of a blasting is to 
generate a suitable muck pile having a suitable size 
distribution of the rock that can be efficiently loaded, 
transported and milled. The blasting operation affects all the 
other secondary activities, and the ultimate goal is to 
achieve the lowest costs of exploitation and processing. For 
this aim, 35 blasting events in the mines were investigated 
and the most influential parameters on the mean fragment 
size, namely HD, S, B, ST, QC and DH, were measured. The 
reliability of the developed models was checked using 
several performance indices, i.e. R2, MEDAE and RMSE. 
Considering only results of R2, values of 0.941 and 0.885 
were obtained for datasets of RT model and MLR model 
respectively, that reveal the higher performance of this 
model in predicting mean fragment size, In addition to the 
R2, MEDAE and RMSE values of proposed models were 
compared according to the accuracy of them. It is found that 
the performance indices obtained by the RT model are better 
compared to the MLR model. The end results indicated that 
both models were capable of predicting the mean fragment 
size; however, the most accurate result can be obtained by 
using the RT model.  
 

REFERENCES 

[1] Sharma, P. D., Blast Fragmentation Appraisal Means to Improve 
Cost-Effectiveness in Mines, Mining and Blasting Wordpress Journal, 
pp.1-14, 2010. 

[2] Tekniska, H., International Symposium on Rock Fragmentation by 
Blasting, Australasian Institute of Mining and Metallurgy, Society for 
Experimental Mechanics (U.S.), pp. 312-316, 2009. 

[3] Hartman, H. L., Mutmansky, J.M., Introductory to Mining 
Engineering, John Wiley & Sons publications, second edition, New 
Jersey (US), pp. 421-430, 2002. 

[4] Tomczyk, A. M., Ewertowski M, Planning of recreational trails in 
protected areas: application of regression tree analysis and geographic 
information systems, pp.129–139, 2013. 

[5] Vega, F. A., Matias, J. M., Andrade, M. L., Reigosa, M. J., Covelo, E. 
F., Classification and regression trees (CARTs) for modeling the 
sorption and retention of heavy metals by soil. J Hazard Mater 167, 
pp. 615–624, 2009. 

[6] Tiryaki, B., Predicting intact rock strength for mechanical excavation 
using multivariate statistics, artificial neural networks, and regression 
trees, Eng Geology, pp.51–60, 2008. 

[7] Lewis, R. J., An introduction to classification and regression tree 
(CART) analysis. In: Annual meeting of the society for academic 
emergency medicine in San Francisco, California, pp. 1–14, 2000. 

[8] Breiman, L., Freidman, J., Olshen, R., Stone, C., Classification and 
regression trees, Wadsworth, Belmont, pp. 1-25, 1984. 

[9] Gulden, K. U., Nese, G., A study on multiple linear regression 
analysis, Procedia-Social and behavior sciences, ELSEVIR 
publications, pp. 1-7, 2013. 

[10] Maerz, N. H., Palangio, T. C. and Franklin, J. A., WipFrag image 
based granulometry system, Proceedings of the FRAGBLAST 5 
Workshop on Measurement of Blast Fragmentation, Montreal, 
Quebec, Canada, pp. 91-99, 1996. 

 


