Effect of Poling on Ferroelectric Properties and Leakage Current Behavior of 0.7Ba(Zr_{0.2}Ti_{0.8})O₃-0.3(Ba_{0.7}Ca_{0.3})TiO₃ Lead Free Ceramics Smaranika Dash¹, Hari Sankar Mohanty¹, Ravikant², Ashok Kumar², Reji Thomas³, Dillip K. Pradhan^{1*} - ¹ Department of physics and Astronomy, National Institute of Technology, Rourkela, Odisha 769008, India - ² CSIR- National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India - ³ Division of Research and Development, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab–144411, India - *E-mail: dillip.pradhan79@gmail.com ## Introduction - > BaTiO₃ (BT) is one of the important ferroelectric material and its properties can be easily tailored by suitable modification on A-site and/or B-site [1]. It also doesn't contain any volatile element. - > Substitutions at the Ba-site or Ti-site of BaTiO₃ have a significant effect on the Curie temperature (T_c) and its electrical properties. - > The substitution of Ca increases the stability of the tetragonal phase and also helps in excluding the formation of the unwanted hexagonal phase of BaTiO₃ (BT) [2]. However, addition of Ca doesn't affect the Curie temperature of BT rather it lowers the polymorphic phase transition (PPT). - > The addition of Zr at the Ti-site increases the chemical stability of the material [3]. - \succ A BT based solid solution, 0.7BaZr_{0.2}Ti_{0.8}O₃-0.3(Ba_{0.7}Ca_{0.3})TiO₃ (BZT-BCT), has attracted great attention due to its high ferroelectric and piezoelectric properties. - > To improve the physical properties from application point of view, synthesis of high-quality stoichiometric ceramics powder at lower temperature synthesis conditions with improved microstructure is required. - > To get the desired piezo and ferroelectric properties for a polycrystalline material, electrical poling (E-poling) is one of the essential requirement. #### Characterisation XRD (Rigaku JAPAN Ultima-Structural IV, Cu K_{a1}, $\lambda = 1.5405A^{0}$ Surface FESEM- NOVA morphology Nano SEM 450 Ferroelectric Radiant and I-V Ferroelectric characteristi **Tester** ## **Results and Discussion** Fig. 1: XRD pattern shows the formation of single phase perovskite material. Rietveld refinement of XRD pattern shows rhombohedral structure with space group $R3m(a=b=5.6770(3) \text{ Å}, c=6.9509(6) \text{ Å}, \chi2=3.89)$. Inset figure shows the FESEM micrograph with dense microstructure. Fig. 3: The leakage current density of the materials obeys the space charge limited conduction (SCLC) mechanism for both poled and unpoled sample. Fig. 2: (a) A well defined ferroelectric hysteresis loop is observed for both poled and unpoled sample. From P-E loop, the ferroelectric parameters are derived. (b) The I-V characteristic shows the similar behaviour for both positive and negative applied electric field. Fig. 4: (a) The temperature dependent dielectric constant shows a broad peak with a phase transition around 50 °C(b) Modified Curie Wiess law has been fitted . The value of γ =1.7. #### Conclusions - The auto combustion technique has been used to synthesized a single phase 0.7BZT-0.3BCT ceramics. - The XRD pattern shows a single phase perovskite structure without any secondary phase. Rietveld refinement reveals that the material possess rhombohedral structure with space group *R3m*. - > A broad peak has been observed around Tc≈50°C from temp. dependent dielectric properties. Highly dense microstructure is formed with a grain size around 2 μm. - > Electrical poling improves the shape of the hysteresis loop and reduces leakage current. ### **Publication** 1. Smaranika Dash *et al.*, J. Mater. Sci. Mater. Electron., 29[24] 20820 (2018). ## References - 1. J. Rodel *et al.*, J. Am. Ceram. Soc., 92 [6] 1153 (2009). - 2. T. Mazon, J. Appl. Phys. 97, 104113 (2005). - 3. V. S. Puli, J. Phys. D: 44, 395403 (2011) ## Acknowledgement Smaranika Dash thankfully acknowledge MHRD, India for research fellowship.