

Structural, Magnetic and Dielectric Properties of Dy_{0.95}Gd_{0.05}MnO₃ Prepared by Acrylamide Polymer Gel Template Method

Krishnamayee Bhoi¹, T. Dam¹, S. R. Mohapatra¹, A. K. Singh¹, P. N. Vishwakarma¹, P. D. Babu², V. Siruguri², Dillip K. Pradhan^{1*}

¹Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha-769008, India ² UGC-DAE-Consortium for Scientific Research, Mumbai Centre, R-5 Shed, BARC Campus, Mumbai-400085, India **Corresponding mail:** <u>dillip.pradhan79@gmail.com</u>

INTRODUCTION

- \Box Rare earth manganites (RMnO₃, R = rare earth element) are drawing attention due to their interesting properties like stronger intrinsic magneto-electric behavior, low dielectric loss, colossal magnetoresistance, spin frustration etc.
- **DyMnO₃ (DMO) crystallizes in orthorhombic as well as** hexagonal phase depending upon the synthesis condition. However, orthorhombic phase show higher magneto-electric coupling as compared to hexagonal phase.
- **Orthorhombic phase of DMO undergo various stages of** magnetic ordering like AFM ordering of Mn ion (T_N(Mn)) around 38 K- 43 K, lock-in temperature (T_{lock}) around 18 K- 23 K below which ferroelectricity is observed and AFM ordering of Dy^{3+} ion (T_N (Dy)) around 6 K- 10 K respectively □ Lower concentration of Gd substitution at Dy site of **DyMnO₃** will not change the crystal structure. Further substitution of rare earth ions at R-site of orthorhombic **RMnO₃** system reported to be played an important role in enhancing ferromagnetic behavior.

 \Box For T > 50 K, the experimental data is fitted via Curie-Weiss law using the

- material.
- □ Studies of low temperature magnetic and Dielectric behaviour of orthorhombic DGMO system.

Dielectric Study

The intrinsic dielectric behavior of the material is observed up to 160 K and above 160 K there is large increase in dielectric behavior, which may be due to the contribution from extrinsic Maxwell-Wagner polarization phenomena.

SUMMARY & CONCLUSIONS

□ Acrylamide polymer gel template method has been

□ The fitting of M-H curves give the presence of two weak

adopted to prepare the high quality of DGMO samples

FM components and AFM components at 3 K, while M-

H curve at 20 K is due to single weak FM and AFM/PM

relation: $\chi = \frac{1}{(T - \theta_N)}$, where C = Curie constant, $\theta_N = Curie$ temperature. □ The M-H data obtained at 3 K and 20 K are fitted using the relation: $M(H) = \left| \frac{2M_s}{\pi} \tan^{-1} \left\{ \left(\frac{H \pm H_{ci}}{H_{ci}} \right) \tan \frac{\pi M_{FM}^R}{2M_{FM}^S} \right\} \right| + \chi H$ Where M_{s} , M^{R}_{FM} and H_{ci} are saturation magnetization, remanent magnetization and co-ercivity respectively.

Table.1 Various magnetic parameters obtained after fitting the magnetic data.

mple	Curie-Weiss Fitting		M-H Fitting			
GMO	<i>pc</i>	Temp.	H _c (Oe)	χ	M ^S _{FM}	M ^R _{FM}
				(µ _B /f.u Oe)	(µ _B /f.u.)	(µ _B /f.u.)
	$C = \approx 16.54 \text{ (cm}^3\text{Kmol}^-$					
	1)	20 K	≈ 6.5 6	$\approx 2.35 \times 10^{-5}$	4.46	4.45×10^{-4}
	$\Theta_{\rm N} = \approx -22.75 ({\rm K})$	3 K	≈ 48.54 (FM1)	≈ 5.96 × 10 ⁻⁶	4.92	0.012
	$\mu_{\rm eff} = \approx 11.50 \mu B$		≈ 182.7 (FM 2)			
				$\approx 2.55 \times 10^{-4}$	2.92	0.043

REFERENCES

- 1. T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).
- 2. Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).
- 3. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
- 4. J. Magesh, P. Murugavel, R. V. K. Mangalam, K. Singh, Ch. Simon and W. Prellier, J. Appl. Phys. 112, 104116 (2012).

□ The intrinsic dielectric behavior of the material is

observed up to certain low temperature range.

without any impurity phase.

contribution.

