

Preparation Of Low-cost Porous Mullite Balls From Kaolin And Alumina Using Naphthalene As Pore-former

<u>Amit Kumar Yadav^{1, a)}, Lubna Farheen¹ and Sunipa Bhattacharyya¹</u>

¹Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, India-769008 ^{a)}Email-id: amitkhola26@yahoo.com

Introduction

* Support for the heterogeneous catalyst attracts the great interest in many

industrial applications like biomass conversion, ammonia synthesis, renewable

fuels, selective oxidation, renewable chemicals, etc.

- * It should have sufficient mechanical strength, high thermal and chemical stability.
- In this work, binary system of Al₂O₃-SiO₂ is taken into consideration to form porous spherical mullite balls having high thermal and chemical stability with adequate mechanical strength to achieve high quality of support for catalysts.

Results & Discussion

Thermal Analysis, Phase analysis, Apparent porosity and bulk density

- * Kaolin is abundantly present in the nature but it shows deficiency of alumina to form stoichiometry mullite structure.
- ★ Therefore, required amount of alumina (Al₂O₃) is added from outside to maintain the stoichiometry ratio between Al₂O₃ and SiO₂ to form stable mullite system.

<u>Kaolin (gm)</u>	<u>Alumina (gm)</u>	<u>Naphthalene</u>	Wt. % of Naphthalene (Pore-
		<u>(gm)</u>	<u>former)</u>
3.1306	2.869	0	0%
2.9742	2.7258	0.3	5%
2.8176	2.5823	0.6	10%
2.6611	2.4388	0.9	15%

 Table 1. Batch calculation for each spherical ball of 6gm

Acknowledgement

The financial support by the Science and Engineering Research Board (SERB/F/8796/2015-16), Government of India (project file no-YSS/2015/000856)

Naphthalene (Pore-former)

Variation in maximum load due to change in wt.% of naphthalene

500 L

Conclusion

* Porous ceramic balls using naphthalene as a pore former was successfully prepared which shows apparent

porosity of around 45% and bulk density of 1.657gm/cm³ at 1600°C with 15wt.% of naphthalene.

*** XRD** and microstructure analysis evident that lathe-shaped mullite was formed.

* Point load strength is also better in the case of 15wt% naphthalene, i.e., 2342N.

* According to the analysis it suggests that prepared mullite balls are proving good support for the

heterogeneous catalyst with high porosity (for impurity filtration purpose) and good mechanical strength.

References

- 1. C. M. Friend and Xu. Bingjun, Acc. Chem. Res., 50(3), pp.517-521 (2017).
- 2. L. Zhidong, D. Yebin and X. Xincheng, Pet. Sci. Technol., 28(11), pp.1147-1157 (2010).
- 3. R. Salomão and L. Fernandes, J. Eur. Ceram. Soc., 37(8), pp.2849-2856 (2017).
- 4. S. Bhattacharyya and P.S. Behera, Appl. Clay Sci. 146, 286-290 (2017)

