
ADMM-Based Distributed Recursive Identification
of Wiener Nonlinear Systems Using WSNs

Saurav Gupta∗,1, Ajit Kumar Sahoo∗,2, Upendra Kumar Sahoo∗,3
∗Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, India

Email: 1greater.saurav@gmail.com, 2ajitsahoo@nitrkl.ac.in, 3sahooupen@nitrkl.ac.in

Abstract—The distributed estimation over wireless sensor net-
works (WSNs), as opposed to least-squares and fusion-center
based estimations, is proficient to work with real-time applica-
tions. In this paper, a block-structured Wiener model is identified
in a distributed fashion by minimizing the least-squares cost
function on prediction error. As the block-structured Wiener
model can approximate a large class of nonlinear systems with a
small number of characteristics parameters hence makes it more
suitable to work with. The global minimization task is reformed
into several constrained subtasks in a manner that each node in
WSN can obtain the parameters of interest locally. Each node
in the network has the ability to combine its local estimates
with the single-hop neighbors’ estimates to obtain the global
parameters of interest. The optimization of the reformulated
cost is accomplished using a powerful distributed method called
alternating direction method of multipliers. Simulations are
carried on an infinite-order nonlinear system under the impact
of observation noise. The obtained results are juxtaposed to the
results of non-cooperative algorithm to show the effectiveness
and superiority of the proposed algorithm.

Keywords—WSN, nonlinear systems, Distributed, basis func-
tions, ADMM, fusion-center.

I. INTRODUCTION

Data-driven system modeling is an important research area
for a variety of real-time applications. This approach firstly
selects the pertinent model structure and then estimates the
interested parameters using an identification method. The
block-oriented nonlinear models have simple structures hence
attracted many researchers in the field of system identification,
system design and control, and prediction. Further, it requires
very less parameter complexity to approximate a large class
of nonlinear [1], [2]. The block-oriented nonlinear modeling is
classified into two common model structures: 1) Wiener model
where the cascade connection of a linear dynamical system is
followed by a static nonlinear element, and 2) Hammerstein
model where the linear and nonlinear blocks get reversed i.e.
a static nonlinear element is followed by a linear dynamical
system.

Previously in [3], we have proposed distributed Wiener
modeling for distributed parameter systems where parameters
are spatially and temporally coupled. There are many engi-
neering applications where parameters are only temporally
varying i.e. lumped parameter systems (LPSs). The objective
of our proposed work is to identify the Wiener model for
LPSs in a distributed recursive manner through wireless sensor
network (WSN). A similar approach can be employed to
identify the Hammerstein model in a distributed fashion.

WSN composed of spatially dispersed battery operated sensors
with communication and processing capabilities have gained
importance because of their real-time applications including
precision agriculture, transportation, habitat monitoring, net-
work re-tasking, and health monitoring [4]–[7]. The online
decentralized estimation using WSN is able to retrieve the
desired parameters [8]. The distributed estimation using WSNs
has gained importance in the field of modeling applications
with reduced use of resources.

Some of the important literature on Wiener modeling are:
Wiener systems are identified by Wigren in [9] using predic-
tion error based recursive algorithm. Hagenblad et al. in his ar-
ticle [10] utilized maximum likelihood estimation for identify-
ing Wiener model. Adrian Wills et al. in [11] addresses a new
maximum likelihood-based method to identify Hammerstein-
Wiener model where nonlinearity has been considered to be
non-invertible. A renowned least-squares based and gradient-
based Wiener model identification algorithms have been de-
signed by Dongqing Wang et al. in [12]. Bai in [13] proposed
a blind approach for the identification of Hammerstein-Wiener
model. Sharareh Talaie in [14] developed an algorithm by
employing Adaptive Weighted Particle Swarm Optimization
(AWPSO) to identify nonlinear systems using Hammerstein-
Wiener structure. Gupta et al. in [15] described least mean
square approach for Wiener system identification. F. Ding et
al. in [16] described a recursive least-squares identification
algorithm for Wiener nonlinear systems where the unknown
terms of the information vector are replaced by their preceding
estimates to take care the difficulty in estimating unmeasured
variables and unknown terms.

As of now, all the literature on Wiener model identification
employs either LS-based method or adaptive way of optimiza-
tion. The real-time modeling and control applications demand
the modeling of nonlinear systems in an online adaptive
manner with improved flexibility towards failure. These real-
time demands are inefficiently fulfilled by employing LS and
single agent based adaptive optimization because LS-based
methods are offline in nature and single agent based adaptive
methods are prone to noise and failure. The above-mentioned
real-time demands can be fulfilled by employing WSN-based
cooperative and distributed signal processing that improves
the modeling in terms of performance and resilience towards
failure [17]. The aim of this research is to propose an algo-
rithm for the identification of Wiener model using distributed
adaptive strategy. The job can also be fulfilled by using the



centralized approach where data are processed online using
fusion-center (FC). The FC-based approach suffers from the
limitations of large energy consumption [5], computationally
fast central processor requirement [8] and non-robustness due
to the failure of the whole system if FC gets corrupted [6].
Distributed estimation over the network is introduced with an
intention to rescue from these limitations.

In distributed estimation, the nodes in the network locally
estimate the parameter vector and then with the means of
cooperation between nodes, all the nodes tend towards global
estimate. The ADMM-based consensus strategy is used as an
optimization method where the least-square cost function of
Wiener model is decomposed into several subtasks. These
subtasks are individually allocated to each node, finding
their desired estimates parallelly in a cooperative way [18],
[19]. The competence to estimate the parameters of nonlinear
Wiener model is presented in the simulation result section.

Notation: The boldface letters and bar-head letters are used
to denote the matrix and vector quantities respectively. Scalar
quantities are represented by simple letters. Moreover, (·)T
and ‖·‖ denote the transpose and the Frobenius norm of
any quantity respectively. Other used notations are defined
wherever needed.

II. TRADITIONAL WIENER MODELING

Wiener nonlinear model was firstly studied by N. Wiener
in 1958 to significantly model sensor nonlinearities. Wiener
nonlinear system consists of a series blocks of LTI subsystem
followed by memoryless nonlinearity function as shown in Fig.
1. The input b (t) is first passed through LTI subsystem having

Fig. 1: Wiener nonlinear system [20]

transfer function G (q) then the outcome is passed through
static nonlinear function F (·) : R to get the corresponding
output y (t) as

y (t) = F (d (t)) = F (G (q) b (t) + v (t)) . (1)

G (q) is assumed to be expanded into the orthonormal basis
functions as

G (q) =

nα∑
i=1

αigi (q), (2)

where gi(q) (i = 1, ..., nα) can take any of the known
orthonormal basis functions and the parameters αi ∈ R (i =
1, .., nα) has to be estimated. Finite impulse response, La-
guerre and Kautz functions etc. can be used as known basis
functions gi(q) (i = 1, ..., nα).

The Wiener system intermediate variable d (t) can be ex-
pressed using Fig. 1 and Eq. (2) as

d(t) = G (q) b(t) + v(t) =

nα∑
i=1

αigi (q)b(t) + v (t) . (3)

Let us assume the nonlinear function used is invertible. The
inverse of nonlinear function F (·) can be expanded as the
nonlinear basis functions in the following form as

d(t) = F−1 (y(t)) =

nβ∑
j=1

βjfj (y(t)), (4)

where the unknown parameters βj ∈ R (j = 1, ..., nβ) need to
be estimated. The basis functions fj(·) : R→ R (j = 1, ...nβ)
to capture nonlinear dynamics may be any of the following:
such as simple polynomials, radial basis functions, splines ba-
sis functions etc. The polynomial representation is commonly
used because of its simple implementation and easy to analyze.
The orders nα and nβ are supposed to be known formerly.
The estimation of the unknown parameters αi (i = 1, ...nα)
and βj (j = 1, ...nβ) using the data set {b(t), y(t)}Lt=1 is the
primal task of Wiener modeling.

With the use of general assumption i.e. β1 = 1, f1(y(t)) =
y(t) then equalizing Eq. (3) and Eq. (4) leads to

y(t) =

nα∑
i=1

αigi (q)b(t)−
nβ∑
j=2

βjfj (y(t)) + v (t) . (5)

The expression (5) can be specifically rewritten in the linear
regression form as

y(t) = ζ̄T κ̄ (t) + v (t) , (6)

where

ζ̄ =
[
α1, ...αnα , β2, ...βnβ

]T ∈ R(nα+nβ−1), (7)

κ̄ (t) =

[
(g1 (q) b(t))

T
, ..., (gnα (q) b(t))

T
,

−fT2 (y(t)) , ...,−fTnβ (y(t))

]T
∈ Rnα+nβ−1.

(8)
The main objective is to estimate the parameter vector ζ̄ by
minimizing the quadratic cost function of prediction error in a
distributed manner using WSN. The estimate ˆ̄ζ can be obtained
by minimizing the quadratic cost function of prediction error

ˆ̄ζ = arg min
ζ̄

{
1

L

L∑
t=1

∥∥y(t)− ζ̄T κ̄ (t)
∥∥2

}
. (9)

III. DISTRIBUTED WIENER MODEL IDENTIFICATION

A WSN with a N number of sensing units (nodes) is con-
sidered for in-network data processing. These sensing units are
dispersed into an area under monitoring to get the measured
output for any input. At each node, the local estimates can be
obtained using these measurements. Any node j can only com-
municate with its immediate neighbors having cardinality |Nj |
i.e. single-hop communications are allowed for exchanging
information. Inter-sensor links are assumed to be symmetric
hence the WSN is designed to be the undirected connected



graph. For any input {bj (τ)| τ = (t−Q+ 1) , .., t} at any
node j, the corresponding measured output is yj(t). Here Q is
the fading memory of the nonlinear system under monitor. The
global cost function of any WSN for the linear regression prob-
lem (9) can be obtained by stacking all the nodes’ measured
output into a global vector as Γ̄ (t) = [y1 (t) , ..., yN (t)]

T ∈
RN×1 and their corresponding regressor vectors are stacked
to form a global matrix U (t) = [κ̄1 (t) , ..., κ̄N (t)] ∈
R(nα+nβ−1)×N and then obtain the estimate vector ζ̄ of
dimension (nα + nβ − 1)× 1 by the minimization of

ˆ̄ζ(t) = arg min
ζ̄

E
∥∥∥Γ̄ (t)−UT (t) ζ̄

∥∥∥2

= arg min
ζ̄

N∑
j=1

E
[(
yj (t)− κ̄Tj (t) ζ̄

)2]
,

(10)

here symbol E represents the expectation operator. The opti-
mal parameters of the Wiener model that are stacked as the
entries of ζ̄, can be estimated by the minimization of global
cost function (10). For minimizing the cost in (10) w.r.t. ζ̄, a
fusion-center is required to store and process all the data from
each node. This centralized way of data processing requires
a powerful central processing unit (CPU) and the enormous
amount of energy as a communication resource. In order to res-
cue from these drawbacks, in-network data processing based
distributed algorithm is developed that allows to recursively
estimate the desired parameters of Wiener model.

In order to access the in-network processing, each node is al-
located with its individual task of calculating their intermediate
estimates also called local estimates. From (10), it is unlikely
to say how and which node will update the parameter vector
ζ̄ as it is spatially non-separable. To solve this uncertainty,
auxiliary variables

{
ζ̄j
}N
j=1

at each node has been introduced
to take care of updating vector ζ̄. Now the global cost function
in (10) can be well expressed in the equality constraint form
as{

ˆ̄ζj (t)
}N
j=1

= arg min
{ζ̄j}N

j=1

t∑
m=0

N∑
j=1

λt−m
[
yj(m)− κ̄Tj (m)ζ̄j

]2
+N−1λt

N∑
j=1

ζ̄Tj Ψ0ζ̄j ,

s.t. ζ̄j = ζ̄j′ , j ∈ [1, .., N ], j′ ∈ Nj ,
(11)

where λ is the forgetting factor which is used to practically
compromise between misadjustment and tracking [21], Ψ0

is the positive definite matrix used for regularization and
Nj is the neighbors of any node j. Eq. (10) and (11) are
equivalent in a sense that

{
ζ̄j = ζ̄

}N
j=1

is followed. Since
WSN is connected, Eq. (10) and (11) are equivalent because{
ζ̄j = ζ̄

}N
j=1

.
Now since each sensor node has been alloted with its

individual task, ADMM optimization technique can be em-
ployed in (11) to get the estimates of ζ̄ in a decentralized
and cooperative manner. The auxiliary variables

{
ζ̄jj′
}

for

j′ ∈ Nj are also need to be considered with equality consensus
constraints equivalent to the constraints specified in (11) as

ζ̄j = s̄j
′

j , ζ̄j = s̄jj′ for j ∈ [1, N ], j′ ∈ Nj , j 6= j′. (12)

ADMM algorithm is well suited for decomposition of op-
timization problem into separable constrained minimization
subtasks [19]. To facilitate the ADMM optimization, rewriting
(11) with consensus constraints specified in (12) as a quadrat-
ically augmented Lagrangian decomposable form

La(ζ̄, z̄, h̄, w̄) =
N∑
j=1

t∑
m=0

λt−m[yj(m)− κ̄Tj (m)ζ̄j ]
2

+
λt

P

N∑
j=1

ζ̄Tj Ψ0ζ̄j

+

N∑
j=1

∑
j′∈Nj

[
(h̄j

′

j )
T

(ζ̄j − s̄j
′

j ) + (w̄j
′

j )
T

(ζ̄j − s̄jj′)
]

+
c

2

N∑
j=1

∑
j′∈Nj

[∥∥∥ζ̄j − s̄j′j ∥∥∥2

+
∥∥∥ζ̄j − s̄jj′∥∥∥2

]
,

(13)
where h̄ and w̄ are the associated Lagrangian multipliers, c
represents positive penalty coefficient, ζ̄ =

{
ζ̄j
}N
j=1

, z̄ ={
s̄j

′

j

}j′∈Nj
j∈[1,..,N ]

and
[
h̄, w̄

]
=
{
h̄j

′

j , w̄
j′

j

}j′∈Nj
j∈[1,..,N ]

. At time

instant t+ 1 and ADMM iteration k, the first step towards the
estimation of optimum parameter vector ζ̄ using ADMM is to
get the local updates of Lagrangian multipliers. The updates of
Lagrangian multipliers can be obtained using gradient ascent
optimization method as

h̄j
′

j (t+ 1; k) = h̄j
′

j (t+ 1; k − 1)

+ c
[
ζ̄j(t+ 1; k)− s̄j

′

j (t+ 1; k)
] (14)

w̄j
′

j (t+ 1; k) = w̄j
′

j (t+ 1; k − 1)

+ c
[
ζ̄j(t+ 1; k)− s̄jj′(t+ 1; k)

]
.

(15)

In the second step of ADMM the minimization of (13) is
obtained w.r.t.

{
ζ̄j
}N
j=1

with the assumption that all other vari-
ables are kept fixed to their recent values. Then ζ̄j(t+1; k+1)
can be recursively updated as

ζ̄j(t+ 1; k + 1) =[
2

t+1∑
m=0

(
λt+1−mκ̄j(m)κ̄Tj (m) +

λt+1

N
Ψ0

)
+ 2c |Nj | I

]−1

×



2

t+1∑
m=0

(
λt+1−mκ̄j(m)yj(m)

)
−
∑
j′∈Nj

(
h̄j

′

j (t+ 1, k) + w̄j
′

j (t+ 1, k)
)

+c
∑
j′∈Nj

(
s̄j

′

j (t+ 1; k) + s̄jj′ (t+ 1; k)
)


.

(16)
In the third step, (13) is minimized w.r.t. s̄j

′

j while keeping



other variables to their recent updates. This leaves out the
expression

s̄j
′

j (t+ 1; k + 1) = 0.5
[
ζ̄j (t+ 1; k + 1) + ζ̄j′ (t+ 1; k + 1)

]
+0.5c−1

[
h̄j

′

j (t+ 1; k) + w̄jj′ (t+ 1; k)
]
.

(17)
Let the initialization of Lagrange multipliers is taken as
h̄j

′

j (t+ 1; 0) = −w̄jj′(t+ 1; 0) then h̄j
′

j (t+ 1; k) = −w̄jj′(t+
1; k), ∀ t, k is followed. Now with the usage of (17) into (14)
and (15) along with the property h̄j

′

j (t + 1; k) = −w̄jj′(t +
1; k), ∀ t, k, the Lagrangian multiplier can be written in the
following updated form as

h̄j
′

j (t+ 1; k) = h̄j
′

j (t+ 1; k − 1)

+
c

2

[
ζ̄j(t+ 1; k)− ζ̄j′(t+ 1; k)

]
.

(18)

Now, the substitution of Eq. (17) into Eq. (16) along with the
above mentioned followed property h̄j

′

j (t+ 1; k) = −w̄jj′(t+
1; k), ∀ t, k, Eq. (16) can be rewritten as

ζ̄j(t+ 1; k + 1) =[
2

t+1∑
m=0

(
λt+1−mκ̄j(m)κ̄Tj (m) +

λt+1

N
Ψ0

)
+ 2c |Nj | I

]−1

×



2

t+1∑
m=0

(
λt+1−mκ̄j(m)yj(m)

)
−
∑
j′∈Nj

(
h̄j

′

j (t+ 1, k)− h̄jj′(t+ 1, k)
)

+c
∑
j′∈Nj

([
ζ̄j(t+ 1; k) + ζ̄j′(t+ 1; k)

])


.

(19)
At any time instant t+ 1, Eq. (18) and Eq. (19) are repeated
for K number of ADMM iterations to estimate the desired
parameter vector ζ̄ at each node. For tracking of time-varying
dynamical systems, one ADMM iteration is used per time
instant i.e. ADMM iteration coincides with the time iteration
i.e. k = t.

A. Communication and Computational Complexity

Since the nodes in the network are transmitting as well
as receiving the information, hence there will be transmitting
cost and receiving cost for each sensor node. At any time
iteration, each node in the network has a transmission cost of
{(nα + nβ − 1) (|Nj |+ 1)} scalars which include transmis-
sion of Lagrange multipliers

{
h̄j

′

j

}
j′∈Nj

and local estimate ζ̄j .

Similarly, at any time iteration, each node has a reception cost
of {2 |Nj | (nα + nβ − 1)} scalars that includes the reception
of the Lagrange multipliers

{
h̄jj′
}
j′∈Nj

and local estimates

from the neighboring nodes
{
ζ̄j′
}
j′∈Nj

.
At any sensor node j, O (|Nj | (nα + nβ − 1)) computations

per iteration are required to update Lagrange multipliers using
(18). With the usage of matrix inversion lemma, the inversion
term involved in updating the parameter matrix ζ̄j in (19)

requires O
(

(nα + nβ − 1)
2
)

computations when λ = 1. For

λ < 1, O
(

(nα + nβ − 1)
3
)

computations per iteration will
be required for the inverting term.

B. Convergence Analysis

Proposition 1: For any time t with positive penalty coeffi-
cient c > 0 and initializing the values of h̄j

′

j (t; 0) and ζ̄j(t; 0)
with an arbitrary vector, the local recursive estimate (19) at
any node j will satisfy the consensus constraints as k →∞:

lim
k→∞

ζ̄j (t, k) = lim
k→∞

ζ̄j′ (t, k) = ζ̄centz(t) ∀ j ∈ [1, N ] ,

(20)
where ζ̄centz(t) represents the fusion-center based optimal
solution (centralized solution) i.e. when measured data of
all the nodes along with their corresponding regressors are
collected and processed using fusion-center.

Proof: The claim in Proposition 1 can be proved by going
through the same steps as involved in proving the Proposition
2 of article [22]. The first step is to reformulate the cost
function (10) in a similar form as [23, Eq. 4.76]. Now the
claim argued in Proposition 1 can be proven by mimicking
the steps involved in ADMM [23, pg. 255].

IV. SIMULATION RESULTS

A nonlinear Wiener system with infinite-order and finite
fading memory (Q = 10) as shown in Fig. 1 is taken into
consideration. The intermediate variable and output of the
system is taken as

d (t) = 0.9b (t) + (0.9)2b (t− 1) + ...

+ (0.9)Mb (t− (Q− 1))

y (t) =
1

1 + e−d(t)
.

(21)

The approximated block-structured Wiener model consists of
invertible 2nd-order polynomial nonlinearity i.e. (nβ = 2) is
used to model the above nonlinear system. The LTI subsystem
order nα should be equal to the number of terms in d (t)
i.e. nα = Q = 10. Many types of basis functions other
than polynomial functions can also be utilized in order to
represent the system nonlinearity. But polynomial functions
are simple and easy to analyze, also their implementation is
quite easier hence are employed here to represent nonlinear
basis functions.

The Wiener model parameters for the above-mentioned
system are obtained by applying the proposed algorithm in an
eight-node WSN shown in Fig. 2. A Gaussian sequence with
N (0, 1) is used as an input to the system and the correspond-
ing output is generated using (21). The observational noise
vo(t) is considered to be i.i.d (independent and identically
distributed) with zero mean and noise variances of each node
is depicted in Fig. 3. The forgetting factor λ = 1 and the
penalty coefficient c = 1 are used to estimate the parameter
vector ζ̄. At any time t, the mean-square error (MSE) and
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excess mean-square error (EMSE) are used as the performance
metrics that can be defined at any node j as

MSEj(t) = E
∣∣∣(yj (t) + vo (t))− ˆ̄ζTj (t) κ̄j (t)

∣∣∣2
EMSEj(t) = E

∣∣∣(yj (t))− ˆ̄ζTj (t) κ̄j (t)
∣∣∣2.

If the average of all the nodes performance is taken, the
network performance is defined as

MSEnetwork ,
1

P

N∑
j=1

MSEj

EMSEnetwork ,
1

P

N∑
j=1

EMSEj .

The average of 100 experiment runs is taken over the time
period of 450 iterations. The obtained metrics curves in Fig. 4
and Fig. 5 show that the performance in terms of convergence
rate improves if the ADMM iteration number K is increased
and can come close to the centralized solution if ADMM
iterations K reach to a certain number. The number of ADMM
iterations required to reach close to the centralized solution
depends on the network anatomy as well as on the number of
nodes in the network.

It can also be seen from plots that the non-cooperative way
of data processing has poor convergence rate compared to
standard distributed Wiener (std. D-Wiener) model (k = t or
K = 1). The penalty coefficient c used here is chosen using

50 100 150 200 250 300 350 400 450

ITER 't'

10-1

100

M
S

E

K=1
No-cooperation
K=5
Centralized

Fig. 4: Overall network MSE with increasing values of K for
nonlinear system (21). Comparison with non-cooperation and
centralized algorithms.
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Fig. 5: Overall network EMSE with increasing values of K
for nonlinear system (21). Comparison with non-cooperation
and centralized algorithms.

hit and trial manner to obtain the optimum results. There can
be many other ways of choosing c, which is beyond the scope
of this paper.

V. CONCLUSION AND FUTURE SCOPE

This work proposed a distributed algorithm to identify
Wiener model using WSNs. The designed algorithm can be
implemented for real-time applications. The incorporation of
cooperative and distributed advantages allows the performance
to be more responsive and robust in real-time. The MATLAB-
based simulation results for the identification of Wiener model
are obtained under a noisy environment. The obtained results
are compared to the non-cooperative simulation results show-
ing the supremacy of the deduced framework. In the future,



rather than hit and trial method to find the value of penalty
coefficient c, an adaptive method can be incorporated. Also,
the algorithm can be made computationally and communica-
tively more energy efficient. In this article, we have assumed
the nonlinearity to be invertible which may not be followed by
many practical systems, hence can be considered in the future
article.
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