
A Novel Holistic Security Framework for In-field
Firmware Updates

Sudeendra kumar K, Sauvagya Sahoo, Krishna Kiran, Ayas Kanta Swain, K.K.Mahapatra
kumar.sudeendra@gmail.com, sauvagya.nitrkl@gmail.com, krishna.kiran1217@gmail.com, swain.ayas@gmail.com, kmaha2@gmail.com

National Institute of Technology, Rourkela

Abstract- The software/firmware running on the electronic
devices is regularly updated. In IoT devices, the updates are
performed Over the Air (OTA) through internet. In the absence
of proper security measures, OTA update feature can be
misused. The security threats like firmware reverse engineering,
loading unauthorized firmware and loading authorized firmware
on unauthorized nodes will lead to misuse of intellectual
property, product cloning and denial of service attack. In this
paper, we propose a security framework the microcontroller/SoC
devices can incorporate for secure in-field OTA firmware update
process. The proposed holistic solution support JTAG security,
protecting IP rights of original device manufacturer (ODM) and
secure OTA update. The security framework is designed using
suitable cryptographic algorithms and protocol measures to
address all the security threats connected with OTA
firmware/software update which is not addressed in the past
techniques.

Keywords: OTA Update, JTAG security, Hardware Security.

I. INTRODUCTION

 Security of devices (especially processing elements like
microcontrollers and System on Chips (SoC)) is very
important and critical in the Internet of Things (IoT). The
ODM introduce sensitive assets like cryptographic keys to
access IP cores and bootloader program. Original Equipment
Manufacturers (OEM) develop electronic product or part of
the product using the chips from ODM and introduce their
product related trade secrets in firmware and software. The
confidential assets OEM introduce into device include
cryptographic keys for over the air firmware/software update
and digital rights management (DRM) keys etc [1] [2]. ODM,
OEM and end-user (customer) are the major stake holders in
the supply chain. The ODM introduces confidential assets into
device during design or through its custom bootloader. OEM
and end-user will use it in their application, but they must not
have complete access to it. Similarly assets introduced by
OEM must be secure when the device is with customer and
ODM (during return material authorization, etc). The online or
OTA channel is highly essential to update the systems for the
changing application environments and SoC devices must
facilitate secure OTA update [3] [4].
 Bootloader is primary software runs on processor to mount
operating system or any other application. Secure assets and
license based modules in the hardware are enabled or disabled
through bootloader programs. The generally followed
procedure connected with bootloader program is as follows
[5] [6]: -

• It is common to have multiple bootloaders in modern
day SoC devices. The ODM loads the primary
bootloader into the secure memory, which can load

the secondary bootloader or application directly. The
primary bootloader initialize the device and licensed
IP cores. JTAG is used to load the primary
bootloader into the secure memory.

• The OEM develops both hardware and software.
OEM software may also include secondary
bootloader, which initialize the device with the help
of primary bootloader and all peripherals placed on
the board. Secondary bootloader can be loaded into
memory through different communication channels
like SPI, etc other than JTAG. Secondary bootloader
includes security features to protect the IP rights of
the OEM.

• The JTAG access is restricted to ODM and other
stake holders in the supply chain will have no access
to JTAG which ensure the security of the ODM
assets.

• OTA firmware update from OEM to field device is
performed in the same communication channel used
to load secondary bootloader.

Most of the SoC vendors facilitate the secure OTA updates. In
the existing security solutions, passwords are saved in
software data structures and do not address JTAG security,
safety of bootloaders and OTA update holistically. In this
paper, we propose a holistic security model for low end
microcontrollers generally used in non OS/RTOS
applications. Section II describes the security features
available in modern day SoC’s and prior work in both
academics and industry. In section III, we propose our
security design and section IV discuss the implementation. In
section V, we discuss Analysis and finally, section VI
concludes the paper.

II. PRIOR WORK

We discuss important security implementations in SoC
devices connected with secure OTA update in this section.
ARM TrustZone: - ARM TrustZone support secure booting
and facilitate secure OTA updates. ARM TrustZone facilities
secure update using RSA encryption [6]. The trusted vendor
(OEM or application developer) use RSA private key to
generate the signature of the software code that they want to
deploy. The signature along with code is loaded into flash.
Pubic key is stored in every device to verify the binary loaded
in the flash. The public key is not confidential and it is same
for all devices. Disadvantage of this technique is same public
key is stored in every chip and in most of the cases it is part of
primary bootloader, which is vulnerable to attacks. ARM
recommends creation of OTP (one time programmable)

memory to store the secret key, but it is not a part of ARM
TrustZone technology.
X-Cube SBSFU (Secure Boot and Secure Firmware Update): -
X-Cube SBSFU is a security solution found in STM32
microcontrollers. Device receives the encrypted binaries and
security engine which is part of the device middleware will
manage all critical data and operations [7]. SBSFU is a
middleware solution and it works well when used with
operating system. Passwords/keys are handled at software
level which can be accessed through JTAG and vulnerable to
different kinds of side channel attacks.
Crypto-bootloader of MSP430: - Crypto-bootloader in Texas
Instruments MSP430 microcontroller provides security
against unauthorized firmware updates and IP encapsulation
[8]. AES-CCM is used for authenticated decryption of the
encrypted firmware from vendor and AES-CBC to check the
integrity. Keys used in cryptography are stored in device non-
volatile memory. The initial keys into device are programmed
by ODM in a trusted environment. The primary bootloader
program loaded by ODM includes secret keys, which are
stored in secure memory. The vulnerabilities in this technique
are: - JTAG is not protected and key is same for all devices.
Software based firmware update techniques in automotive
applications: - The authors of paper [9] propose a protocol
and security architecture for OTA updates and diagnosis for
automotive control units. Security architecture is based on
hardware security modules (HSM) which perform all
cryptographic operations. HSM is designed at application
layer level and works well with the operating system (ex: -
OSEK). All passwords are stored in memory as data structures
which are vulnerable.
Sensitive assets like passwords to enable IP cores, etc are part
of primary bootloader which are generally loaded into the SoC
device through JTAG interface in the trusted environment.
Primary bootloader allow porting of OEM firmware and
software through other interfaces like SPI, UART etc.
Primary bootloader block the JTAG interface to OEM and
field technician. The sensitive assets of ODM can be accessed
only through JTAG. JTAG security, IP rights of different
stake holders, secure transactions between vendor and IoT
edge device during OTA firmware/software update are tightly
connected and must be addressed during microcontroller/SoC
design holistically. In this paper, we propose a novel security
architecture addressing the security vulnerabilities of the
above techniques with following features: -

• Completely hardware based key and all other keys
are derived from the hardware key. A unique
password for every chip manufactured.

• A lightweight security framework which fit in the
low end microcontrollers to support IoT security
requirements like OTA update and restricted access
to JTAG.

III. PROPOSED SCHEME

The main objectives of the proposed secure firmware update
are: - Root of trust from hardware is preferred over software.
One of the limitation of previous techniques discussed is
password/key is stored in memory and access directly through

software, which is vulnerable to attacks. The proposed design
achieves the objectives by: cryptographic measures for
encryption, protocol measures to handle supply chain issues
and ensuring secure key management. These three factors
must be addressed carefully. The block diagram of the
proposed security architecture is shown in fig.1. The proposed
framework consists of two sections: JTAG protection section
and firmware update section. The JTAG section comprises of
conventional JTAG 1149.1 circuit with lock/unlock
mechanism. The lock/unlock mechanism consists of True
Random Number Generator (TRNG), One-Time
Programmable (OTP) memory, comparator and logical AND
gate. The functional description of JTAG security mechanism
is as follows: -

• The post manufacturing testing of chips is performed
on ATE (Automatic Test Equipment). During testing,
JTAG is open and ATE will apply test stimulus and
capture responses from the device. At the end of
testing, TRNG (32-bit) is triggered to generate a
random number. Random number is written into
OTP. Random number stored in OTP1 and OTP2 is
read back into ATE.

• The upper word is stored into OTP2 and lower word
into OTP1. OTP1 is used to protect JTAG protection
and OTP2 is used for secure firmware update.

• The TAP (Test Access Port) controller state machine
(FSM) is modified to introduce another extra state to
handle the register in JTAG protection section. JTAG
is locked when TRNG writes a random number into
OTP1 during testing. The ODM after collecting the
OTP data of every chip during testing will store the
chip ID and OTP data in a secure database.

• ODM will use JTAG to load primary bootloader and
OTP1 is used to unlock the JTAG interface. In the
stream of data through TDI pin, OTP1 is loaded into
Register1 and compared with data in OTP1 in a
comparator. After a successful match, comparator
will generate the logic ‘1’ to unlock the “TDO”
signal. JTAG can access any section of device and
apply test input and collect outputs. Access to JTAG
is only restricted to ODM. The primary bootloader is
loaded using JTAG interface into secure memory to
safeguard the interest of ODM.

The functional description for the secure firmware/application
software update is as follows: -

• Secure firmware update section consists of Boot-
core, AES-CBC (symmetric cipher), Interface circuit
(I2C, SPI etc) and RSA (asymmetric cipher).

• ODM will derive both public key and private key for
RSA encryption from the word stored in OTP2.
ODM will share the both public and private key with
OEM. Key used in AES-CBC, public key for RSA
are included in the primary bootloader.

• Interface circuit between the boot-core and Ethernet
connection can be any wired protocols like UART,
I2C or SPI depending on the flexibility. Interface

circuit is a bridge between boot-core and external
world.

• Primary bootloader consists of drivers to initialize all
licensed IP cores, boot-core and all peripheral
modules of SoC device. This will enable the OEM to
load the secondary bootloader or application software
without using JTAG.

• In a factory setup, OEM can load AES encrypted
secondary bootloader or application software directly
into program memory through interface circuit. On-
chip AES-CBC decryption module decipher the
binaries and bootcore will load the binaries to
program memory.

• Once deployed on the field the interface circuit is
connected to internet. When device request for
update, the random value stored in OTP2 is
encrypted in RSA and sent to OEM to identify the
IoT node. OEM decrypt random number and decide
whether the node require update or not. If device is
eligible for update, AES encrypted binaries are
transmitted through internet.

• Encrypted binaries are received through interface
circuitry and decrypted in AES decryption block. The
boot-core will load the decrypted binaries into
program memory.

• AES include cipher block chaining (CBC) which is
used to check the authenticity and integrity of the
firmware/software binaries received over the air.

• The primary bootloader facilitates the rollback
option, when new firmware received over the air fail
authenticity and integrity tests in AES-CBC.

IV. IMPLEMENTATION

To implement and validate the proposed security framework,
we have chosen openMSP430 microcontroller from
opencores.org, AES-CBC, RSA and bootcore.
OpenMSP430 Microcontroller: -The openMSP430 is a clone
of TI MSP430 microcontroller which is FPGA/ASIC
synthesizable openly available in opencores.org [11]. The
openMSP430 core available with opencores.org does not have
RAM or ROM. In our experiment, we have included Verilog
models of RAM and ROM for simulation and verification of
the proposed security framework. The figure 2 shows the
block diagram of the openMSP430 microcontroller. The
memory mapping of the openMSP430 is fully configurable.
The openMSP430 also consists of direct memory access
(DMA) interface is a gateway to the 64kB memory space.
DMA controller supports efficient connection to proposed
Boot-core. Generally, boot-core logic is used to initialize the
program memory at start-up from external memory interface.
In this experiment same channel is used to load the program
from external interface. Once the program memory is loaded,
the boot-core module generates the reset pulse so that CPU
starts fetching the new reset vector from the program memory.

Bootcore: - Bootcore design is based on the flash memory
control logic used in the IC AT26DF081A [12]. This is a
serial flash memory device used to load the code from
external memory to embedded RAM or ROM. The Bootcore
is designed using Verilog HDL.
AES-CBC and RSA: - Advanced Encryption Standard- Cipher
Block Chaining (AES-CBC) and RSA are ciphers. The secure
firmware update section consists of AES-CBC decryption and
RSA design is described in Verilog HDL. General shift
registers are used in simulation to implement OTP1 and
OTP2. Both OTP1 and OPT2 are 16-bits in size.
JTAG/SWD: - The debug infrastructure of openMSP430
deviates from original MSP430 [11]. The custom made
openMSP430 debug interface is based on two-wire protocol
which uses UART or I2C protocol.
The openMSP430 debug architecture is different from
conventional JTAG. In this work, we have gated the signal
similar to “TDO”. The openMSP430 serial debug interface
support two wire communication bus for remote debugging: -
DBG_EN and DBG_FREEZE.
DBG_EN: - This signal is used to enable the serial debug
interface without interfering with processor. When disabled
(DBG_EN = logic 0) debug interface is held into reset.
DBG_FREEZE: - This signal is set when debug interface
stops processor. The purpose of this signal is to freeze a
peripheral when the processor is stopped by software
debugger.
We have used DBG_EN signal to implement the security to
JTAG/SWD in openMSP430. In the place of “TDO” signal in
a conventional JTAG, we have used DBG_EN in lock/unlock
mechanism.
Verification and Synthesis: - The simulation of whole system
is performed in Cadence NC Simulator. The assembly
program is compiled in TI MSP430 compiler and generated
hex code is loaded into program memory through debug
interface. The layered testbench using system Verilog is
created to perform simulations. The primary bootloader code
designed in assembly language of MSP430 initialize the
bootcore and security framework. The bootloader program
initializes the bootcore and facilitates the installation of
secondary bootloader or application software. The complete
system is synthesized using Synopsys Saed90nm library in
Design Compiler.

V. ANALYSIS

Protection of JTAG: - An adversary use the JTAG to get an
access to secret data once the device is deployed on field.
JTAG security schemes presented in the past can be classified
as: - fuse blowing schemes, integrity based schemes, access
control and authentication based schemes [3] [13]. In this
work, we have used access control approach to protect JTAG.
The secret key to unlock the JTAG is generated and stored in
OTP1. OEM or user cannot access it. As every device will
have a unique random number stored in OTP1, key of one
particular chip is not useful in unlocking JTAG of other
device. The unique key will make the JTAG more secure.

Fig.1.Block Diagram of the proposed security architecture Fig. 2. openMSP430 microcontroller with proposed security block

TABLE I
COMPARISON BETWEEN PROPOSED TECHNIQUE AND EARLIER TECHNIQUES

Security Parameter ARM TrustZone [6] X-Cube SBSFU [7] Crypto-bootloader [8] Software [9] Proposed
Protection against
Firmware Reverse
Engineering (RE)

Same key for all devices is
vulnerable to attacks.

Not Supported Same key for all
devices is vulnerable
to attacks.

Not Supported Unique password
for each device
protects from RE.

JTAG Security Protects JTAG Not supported Not supported Not supported Protects JTAG
Password Storage Software based. Not

secured
Software based. Not
secured

Software based. Not
secured

Software based.
Not secured

Hardware based.
Secured.

Firmware reverse engineering: - Reverse engineering the
binaries into assembly in order to analyse the functionality
and get access to secret data is reported in [10]. To perform
this attack, an adversary must have an access to binaries. Most
of the attack schemes on AES are based on statistics and need
large number of encrypted data with the same key. Primary
bootloader is accessible only through JTAG and stored in
secure memory. Access to JTAG is restricted and password to
unlock the JTAG is device specific which is difficult to break.
The probability of adversary getting access to primary
bootloader is very less unless an internal adversary leaks
passwords. The primary bootloader includes device specific
unique keys for RSA and AES which are stored in secure
memory which can be accessed only through JTAG make
secondary bootloader safe.
Adversary in ODM or OEM leaking secret key used in ciphers
make the proposed security framework vulnerable. The
proposed system works well when ODM and OEM are
completely trusted.
Comparison with other techniques: - The comparison between
different techniques with proposed security framework is
presented in Table I.

VI. CONCLUSIONS

The proposed security framework include both JTAG
security and secure OTA firmware update is an effective
security solution for low end microcontrollers used in IoT
applications. The passwords for OTA update are derived from
random values stored in OTP and also unique for given
device. OTA passwords are safe because they are stored in

primary bootloader program which is stored in secure memory
and only JTAG can access it. The unique password for every
device and restricted JTAG access makes the system more
secure in the field in comparison with earlier techniques.

REFERENCES
[1] Sandip Ray, et al, “Protecting the supply chain for automotives and

IoTs”, in the proceedings of 55th IEEE/ACM DAC- 2018.
[2] Jie Lin et al, “A Survey on Internet of Things: Architecture, Enabling

Technlogies, Security and Privacy, and Applications”, IEEE Internet of
Things Journal Volume 4, Issue 5, Pages 1125-1142, Oct-2017.

[3] J. Da Rolt et al., “Test versus Security:Past and Present”, IEEE Trans.
Emerg. Topics in Computing., vol.2, no. 1, pp. 50-62, Mar. 2014.

[4] V.S.Varadharajan et al “Over the Air Updates for Robotic Swarms”,
IEEE Software, Vol.35, Issue 2, pages. 44-50, April-2018.

[5] Ryan Nakamoto, “Secure Boot and Image Authentication Technical
Overview”, https://www.qualcomm.com, Oct-2016.

[6] ARM Security Technology, Building a secure system using TrustZone
Technology, www.arm.com, 2009.

[7] “Getting started with the X-Cube-SBSFU STM32 Cube Expansion
Package”, UM2262 User manual, www.st.com, April-2018.

[8] Oscar Guillen et al “Crypto-Bootloader: Secure in-field firmware
updates for ultra-low MCUs”, www.ti.com, September 2015.

[9] M.S. Idrees, “Secure Automotive on-board protocols: A case of over-the
air firmware updates”, International Workshop on Communication
Technologies for Vechicles, pp 224-238, 2011.

[10] J.Park, A. Tyagi, “Using Power Clues to Hack IoT Devices: The power side
channel provides for instruction-level disassembly” IEEE Consumer
Electronics Magazine, Volume: 6, Issue: 3, July 2017.

[11] https://opencores.org/project/openmsp430.
[12] http://ww1.microchip.com/downloads/en/DeviceDoc/doc3600.pdf.
[13] Kyungroul lee, “A Brief Review on JTAG Security”, 10th International

Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, 2016.

