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Abstract: The static stability of the curved panels subjected to varieties of non-uniform loading including 

partial and concentrated in-plane compressive edge loading is studied using finite element method, 

considering the effects of transverse shear deformation  and  rotary inertia. An eight nodded quadratic 

isoparametric element is employed in the present analysis. The study reveals that the stability behaviour 

of the flat and curved panels is greatly influenced by the geometry, boundary conditions, the type and 

position of loads.  
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INTRODUCTION 

Plates  and  shells  are  extensively  used  as  structural  parts  in  civil, aerospace,  automotive  and  
marine  engineering  structures. This  wide  range  of  practical  applications  demands  a  fundamental  
understanding  of  their  vibration and static stability  characteristics. Experience  showed  that  such  
structures  may  fail  in  many  cases  not  on  account  of  high  stresses, surpassing  the  strength  of  
material  but  owing  to  insufficient  stability  of  slender  members. Due  to  its  significance  in  
structural  mechanics, large  number  of  references  in  the  published  literature  deal  with  vibration  
and  static  stability  behaviour  of  plates  subjected  to  uniform  in-plane   stresses. There  is  a  
renewed  interest  with  development  of  aviation  and  aerospace  programs  during  the  1960’s  which  
is  still  expanding  to off-shore  and  nuclear  engineering.  Timoshenko  and Gere (1961) studied 
analytically the buckling of flat  plates  subjected  to  various  uniform  loads  and  a  pair  of  
concentrated  load  at  mid  breadth. The  buckling  of  plate  subjected  to  localized  edge  loading   
was  investigated  for  few  cases  by  Khan  and Walker (1972). Cases  of  practical  interests  arise 
when  the  in-plane  stresses  are  caused by  concentrated  forces  acting  along the  boundaries. The  
free  vibration  and  buckling  analysis  of  a  rectangular  plate  were  studied  for  a  pair  of  oppositely  
directed  in-plane  concentrated  forces  by Leissa  and  Ayoub (1988) using  Ritz and finite  element  
method (FEM). The  buckling  of  plates  with  different  end  conditions  was  analyzed  using  the  
finite  strip  method  by  Bradford  and  Azhari (1995). Recently, Liew and Chen (2004) studied the 
buckling of flat plates subjected to partial in-plane edge loads using the radial point interpolation 
method. Deolasi and Datta (1993) investigated the parametric instability of  flat rectangular plates 
subjected to localized edge loading. Kang and Leissa (2005) presented solutions for the buckling of flat 
rectangular plates subjected to linearly varying in-plane loading on two opposite simply supported 
edges. The buckling of cylindrical shells subjected to uniform loads was studied by Mandal and 
Calladine (2000) experimentally.  Matsunaga (1999) investigated analytically the stability of curved 
panels subjected to uniform in-plane loads. 
  
Objective  and  Scope of Present Study 

Plethora  of  studies  have  been  made  by  many  researchers  on  buckling  of  plates  and  shells 
subjected to varieties of in-plane edge loads. But studies  on  static  stability  of  shells  with  different  
types  of non-uniform  in-plane  loads  are  scarce. The  study  of  static  stability  of  curved  panels  
with  non uniform  in-plane  load  is  new.  This  further  necessitates  an  extensive  study  on  buckling  
of  curved  panels  subjected  to  non-uniform  in-plane  loads  for  different  boundary  conditions, 
various  aspect  ratio  and  b/h  ratio. 
 
FINITE  ELEMENT FORMULATION 
The governing equation for static stability or buckling of structures in matrix form is:  
 [[K]-λ[Kg]]{q} ={0}         where 
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 An  eight  nodded  isoparametric  element  is  used  in the  present  analysis. A computer program has 
been developed to perform all the necessary computations. The element stiffness and mass matrices are 
derived using a standard procedure. The geometric stiffness matrix is essentially a function of the in-
plane stress distribution in the element due to applied edge loading. Since  the  stress  field  is  non-
uniform, plane  stress  analysis  is  carried  out  using  the  finite  element  techniques  to  determine  the  
stresses  and  these  stresses  are  used  to  formulate  the  geometric  stiffness  matrix.  Reduced 
integration technique is adopted for the element matrices in order to avoid possible shear locking. The 
overall matrices are obtained by assembling the corresponding element matrices, using skyline 
technique. Subspace iteration method is adopted throughout to solve the eigenvalue problems. The 
boundary conditions are imposed restraining the generalized displacements in different nodes of the 
discretized structure. 
 
RESULTS AND DISCUSSIONS 
Convergence study 
The convergence study is carried out for  non-dimesional  buckling  load  parameter for flat  panel 
subjected  to uniform in-plane load as shown in the Table 1. A mesh of 10x10 shows good convergence 
and all further results have been computed with this mesh. 
Table 1: Convergence study for  Non  dimensional  buckling  load (λ) 
                  For a/b=1,  b/h=100,  ν=0.3 , E=2.0X1011 N/m2

 
   Non dimensional buckling load 

Mesh    a/h=10        20     40    100 
   4X4 36.8679 38.8349 39.4261 40.0312 
   8X8 36.8297 38.7770 39.3025 39.4542 
 10x10 36.8284 38.7755 39.3007 39.4511 

 
                                                                      

                                                                      
                                                                      

 
 

     
Comparison with  previous  Results 
 The Non-dimensional  buckling  load  for a flat  panel  subjected  to  concentrated  loading  at  the  two  
opposite  edges  for  different boundary conditions are computed and  compared with the results of 
Liew and Chen (2004) by radial point interpolation method and with Kitipornchai et al. (1993). The 
present finite element formulation is further validated for buckling of flat panel subjected to partial in-
plane edge loading in line with Liew and Chen (2004) and compared with the results obtained by radial 
interpolation method, wherever available. 
 
Table 2 Comparison  of  Non dimensional  buckling  load  parameter     (Nxb2/D)  for  a square Mindlin 

plate  that  is  subjected  to  axial  in-plane  uniform  edge loadings. 
a/b=1, ν=0.3, E=2x1011N/m2

 

Thikness Ratio 
(h/b) Boundaries Liew and Chen 

(2004) 

Kitipornchai et al. (1993) 
Present 

SSSS 37.36 37.38 36.828 
CCCC 81.85 81.84 79.225 

0.1 

CFCF 34.65 34.62 33.727 
SSSS 38.95 38.93 38.775 
CCCC 94.52 94.34 93.4228 

0.05 

CFCF 37.69 37.51 37.2421 

 
 
 
 



Table 3 Comparison  of  Buckling  load  parameters  for  a  square  Mindlin  plate subjected  to  axial   
partial in-plane edge  loading  for different  boundary  condition   

A = 0.5m . b = 0.5m, h/b = 0.01, ν = 0.3, E = 2x1011 N/m2

 
c/a Boundaries 

 SSSS CCCC CFCF 
0 25.647(present) 

25.814 (Leissa 
&Ayoub) 
25.659 (RPIM) 

66.40 (Present) 
66.057 (Leissa &Ayub) 

67.712 (RPIM) 

35.982 (present) 
36.290 (RPIM) 

0.25 26.767 (Present) 
26.925 (RPIM) 

69.553 (Present) 
70.925 (RPIM) 

36.549(Present) 
36.887 (RPIM) 

0.5 29.956 (present) 
30.024 (RPIM) 

79.200 (Present) 
81.024 (RPIM) 

37.775(Present) 
38.656 (RPIM) 

1.0 39.451 (present) 
39.183 (RPIM) 

39.478 (T &Gere) 

99.396 (Present) 
100.178 (RPIM) 

99.3887(T& James) 

38.636(Present) 
38.894 (RPIM) 

 
 
 
 
 
 
 
 
 
Numerical Results 
After convergence study and comparison with previous studies, numerical results on buckling of 
curved panels subjected to varieties of in-plane edge loads are presented. 
 
Table-4 Non dimensional  buckling  load parameter  for  doubly curved panel  subjected to 

  concentrated  load at the  two opposite ends for  different aspect ratio(a/b) and boundary 
  conditions. Λ = Nxb2/D ,ν = 0.3,E=2x1011  N/m2, b/h=100 

 
Hyperbolic  Paraboloid           Cylindrical            Spherical a/b 
SSSS CCCC CFCF SSSS CCCC CFCF SSSS CCCC CFCF 

0.5 55.233 128.552 123.951 71.765 114.655 107.814 78.970 136.809 136.751 

1.0 25.617 116.123 96.873 74.899 118.876 102.062 82.949 127.366 120.401 

2.0 30.143 138.309 68.050 80.198 140.690 45.497 93.791 154.190 50.3287 

3.0 32.381 149.532 32.392 90.861 151.120 27.650 111.842 171.780 21.357 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table-5 Non dimensional  buckling parameters for  doubly curved panel  subjected  to uniform  load at  
              two opposite ends for  different aspect ratio(a/b and boundary  conditions.  

Λ = Nxb2/D ,ν = 0.3,E=2x1011  N/m2 ,b/h=100 
 

Hyperbolic  Paraboloid           Cylindrical            Spherical a/b 

SSSS CCCC CFCF SSSS CCCC CFCF SSSS CCCC CFCF 
0.5 123.355 330.927 266.625 171.987 293.474 189.694 220.244 381.072 272.937 

1.0 39.431 118.2565 54.616 46.356 113.048 41.803 67.092 121.218 55.650 

2.0 38.968 186.587 59.804 166.137 196.552 32.824 187.695 213.817 44.336 

3.0 39.080 195.9317 33.8098 170.659 205.894 24.208 191.808 214.744 20.4469 

 
Table-6  Non dimensional  buckling load  parameters for  partial  edge  loading  at one  end   for   
              different  aspect  ratio(a/b), a = 0.5m . b = 0.5m, ν = 0.3, E = 2x1011 N/m2, b/h=100 

 

Hyperbolic  Paraboloid           Cylindrical            Spherical c/a 
A/b=0.5 a/b=1 a/b=2 a/b=0.5 a/b=1 a/b=2 a/b=0.5 a/b=1 a/b=2 

0.2 88.647 52.492 42.678 105.264 95.641 95.184 119.947 115.093 117.741 

0.4 73.644 41.761 39.646 95.051 100.425 103.860 123.329 117.252 125.116 

0.6 83.502 35.534 36.835 112.975 117.023 118.991 146.684 133.953 141.456 

0.8 101.894 35.698 37.121 140.883 142.670 142.395 180.946 157.129 164.481 

1.0 123.356 38.958 38.969 171.987 171.527 166.137 220.245 185.875 187.695 

Table-7  Non  dimensional   Buckling  load  parameters  for  a  square  Mindlin  curved panel subjected  
to  axial  in-plane  edge  loading for different boundary  condition  a=0.5m, b=0.5m, 
h/b=0.01, ν=0.3, E=2x1011N/m2

Hyperbolic  Paraboloid           Cylindrical            Spherical c/a 
SSSS CCCC CFCF SSSS CCCC CFCF SSSS CCCC CFCF 

0 25.617 116.123 96.873 74.899 118.876 102.062 82.949 127.366 120.401 

0.25 26.730 109.219 88.557 73.368 111.031 85.248 83.315 121.185 104.939 

0.5 29.835 125.327 98.926 88.299 127.475 89.386 103.082 141.435 112.741 

1.0 38.958 213.923 123.036 171.527 218.995 70.307 185.875 234.168 111.725 



 As shown in Table 4 to Table 7, the buckling characteristics of curved panels subjected to non-uniform 
loads are different from flat panels. 

CONCLUSION  
                Investigation  of  buckling  behaviour  of  curved panels  subjected  to  in-plane  edge  
loading  and  concentrated  loading  at  the  two  opposite  edges  for  different  aspect  ratio(a/b), 
thickness  ratio (h/b)  and  boundary  conditions  have  been  carried  out  using  the  finite  element  
method. The  conclusions  are  summarized  as  given  below. 
 
1) The  non  dimensional  buckling  load  parameter  for  a  curved  panel   subjected  to  uniform  

in-plane  edge  loading  and  concentrated  loading   are  large for rectangular panels than 
square panels.  

2)  Non  dimensional  buckling  load  parameter  for  a  curved  panel  is  subjected  to  axial  in-
plane  edge  loadings  for  different  boundary  conditions  increases  as c/a  increases. 

 
3)  Non  dimensional  buckling  load parameter for  a  square  Mindlin  panel   that  is  subjected  

to  axial  in-plane  uniform  edge  loading   for  different  boundary  conditions  increases  with 
introduction of curvature.  

4) Non  dimensional  buckling  load parameter for  a simply  supported  curved  panel that  is  
subjected  to  partial  edge  loading  at  one  end  is  higher  at c/a=0  i.e. at  the  edge  x=0, as 
c/a   increases, the  buckling  load  decrease, however as  c/a  approaches  unity, the  buckling  
load  again  increases  due  to  the  restraining  effect  of  the  other  edge, x=a. 

 
    

REFERENCES 
1. Timoshenko,  S. P &  Gere,  J.M. Theory  of Elastic  Stability – Hill, Newyork,    1961. 
2. Khan M. Z and Walker A.C., Buckling of plates subjected to localized edge loading, The 

Structural Engineer, 50, 225-232, 1972. 
3. Leissa, A. W  & Ayoub, E. F. Vibration  and  abuckling  of simply supported  rectangular  

plate  subjected  to  pair of in-plane concentrated  forces. Journal of  Sound  and 
Vibration,127,155-171,1988. 

4. Bradford, M. A, and Azhari, M, Buckling  of plates  with different  end  conditions using the 
finite strip method, Computers & Structures, 56(1),  75-83,1995. 

5. K. M. Liew and X.L. Chen-Buckling of rectangular Mindlin plates subjected to partial in-
plane edge loads using the radial point interpolation method. International Journal of Solids & 
Structures, 41(2004) 1677-1695. 

6. P. J. Deosai and P. K. Datta-Parametric instability  characteristics of rectangular plates 
subjected to localised edge loading (Compression & Tension).Computers and Structures, 54, 
No1, 73-82,1993. 

7. Jae-Hoon Kang, Arthur. W. Liessa-Exact solutions for the buckling of rectangular plates 
having linearly varying in-plane loading on two opposite simply supported edges. 
International Journal of Solids and Structures, 42(2005) 4220-4238. 

8. P. Mandal, C R. Calladine-Buckling of thin cylindrical shells under axial compression, 
International Journal of Solids and Structures, 37(2000)4509-4525. 

9. Matsunaga H, Vibration and Stability of thick simply supported shallow shells, subjected to 
in-plane stresses, Journal of Sound and Vibration, 225, 41-60, 1999. 

10. R. D Cook , Concepts  and  applications  of  finite  Element  Analysis. John  Wiley, 1989.                        
 
 
 
 
 


	Objective  and  Scope of Present Study
	FINITE  ELEMENT FORMULATION
	RESULTS AND DISCUSSIONS
	Mesh
	Comparison with  previous  Results
	Boundaries
	Liew and Chen (2004)
	Present
	Numerical Results



	As shown in Table 4 to Table 7, the buckling characteristics
	CONCLUSION
	REFERENCES






