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Objective

e 'To identify nonlinear systems using Wiener and
Volterra-Laguerre models in a distributed recur-
SIve manner.

Introduction

e Generally, all the real-time systems have nonlinear
nature hence nonlinear modeling is preferred .

e Data-based system modeling is a key issue for
a many engineering applications such as pH-
neutralization, two tank system control.

e Higher order Volterra kernels can represent these
systems but with high parameter complexity:.

¢ 50 block-structured models are employed but they
can model some specific nonlinearities.

e Eixpanding the nonlinear Volterra kernels with or-
thogonal Laguerre functions can relegate the above
limitations [1].

e A distributed alternating direction method of mul-
tipliers (ADMM) based recursive algorithm for the
identification of above-mentioned nonlinear models
is designed.

Traditional Wiener Model

G (g) = zag (@), (1)

where «; are the parameters to be estimated and
gi(q) (1 = 1,...,n,) are the known basis functions,
can take any of the generalized basis functions.

d(t) =G (q)a(t) +v(t) = ioqgi (q)a(t) + v (t). (2)

Assuming nonlinearity is invertible,
ng
d(t) = F~ (4(t) = >_Bif; (v(1)), (3)
=1

where 3; € R(j = 1,...n3) are the unknown pa-
rameters associated to the nonlinear basis functions
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Figure: Wiener nonlinear system

a(r)

Traditional Volterra-Laguerre
(V-L) Model

Consider a fading memory causal nonlinear system

v (t) = Faia(r)} +v(t), (5)

The finite order R, discrete-time Volterra model
with fading memory M can be given as |2)]
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(6)
The n'"-order Volterra kernel h, can be approxi-
mated using r-dimensional Laguerre function as

()= 3 S L o, ()
7 ()=S0 () +v(t),

where

r...r
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r...r
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The objective is to estimate the parameter vector s
and S in a distributed manner.

Distributed V-L Modeling and
Distributed Wiener modeling

e Consider an ad-hoc WSN with P number of spa-
tially dispersed sensors.

o At any time, node j measures the output ~;(¢)
corresponding to input {a; (7)|7=(t—- M +1),..,t}.
e The scalar measurements of all the nodes
are stacked into a global wvector T'(¢t) =

W (t) s vp ()]
ing regressors stacked in global matrix U (¢) =

{@1 (t) e (T)P (t)} c R(r%—...—l—rR)xP.
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o Then estimate the vector S by minimization of

L (10)

A

S = arg min EHF () -U"(t)S
S

e To facilitate the distributed estimation of S, aux-
il ables {1 introduced t t
iliary variables { J}j:1 are introduced to represen

the local estimates at each nodes.

e The optimization problem in (10) can be re-
expressed as

‘A P t P B 49

{3, (t)} —arg min 3 SN y(m) — 7 (m) S

j=1 {Sj}f_l m=0 j=1

P
P_l)\tZS’]T\IJOS’j,
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st. S;=8,5€1,..,P], e N;,
(11)
where A is the forgetting factor and W is the posi-
tive definite matrix used for regularization.

e ADMM is employed to optimize (11) in a distributed
fashion [3].
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Conclusion

A distributed identification of Volterra-Laguerre
model and Wiener model is designed.

e More responsive and robust performance.

e Simulations are plotted under noisy environ-
ment.

e Results are compared with the non-cooperative
estimation.
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Simulation Results

o Consider an infinite-order, finite length (M = 5)
Wiener type nonlinear dynamical system

d(t) =2.5a(t)+2a(t —1)+ 0.5a (t — 2)
+ 0.1a (t — 3) + 0.05a (t —4) (12)
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Figure: Network performance of the proposed distributed
Volterra-Laguerre model for the nonlinear system (12).
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Figure: Network performance of the proposed distributed
Wiener model for the nonlinear system (12).

o Next, let us consider a 2"%order nonlinear system
for which Wiener model does not exists,
d(t) =25a(t)+2a(t —1)0.5a(t —2)+
+0.1a (t — 3) 4+ 0.05a (t — 4) (13)
v (t) = 10d (t) — 2(d (t))",
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Figure: Network performance of the 2"%-order distributed
Volterra-Laguerre model for the nonlinear system (13).

e Steady-state values of the performance curves are
significantly less hence the proposed modeling can
be effectively use to model the nonlinear systems.



