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MOTIVATION 

 

 

      Hlynka and Sajobi, in their paper “A Markov Chain Fibonacci Model ” established the presence of 

Fibonacci numbers in numerators and denominators of the steady state probabilities of a particular class 

of Markov chains. Further they showed that a fixed Fibonacci type limiting vector can arise from more 

than one type of transition  probability matrix. In addition to it the methods allow us to obtain limiting 

vectors for certain infinite state processes in a relatively easy manner, by working with properties of the 

finite state version. Motivated by their work, we construct a class of Markov chains such that their steady 

state distributions involve the balancing, Lucas-balancing and balancing-like numbers. An identity 

relating the balancing numbers and the silver ratio can be obtained as a byproduct. 
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ABSTRACT OF THE TALK 

 Balancing and Lucas-balancing numbers are solutions of 

a Diophantine equation and satisfy a second order 

homogeneous recurrence relation. Interestingly, these 

numbers can be seen as numerators and denominators in 

the steady state probabilities of a class of transition 

probability matrices of Markov chains. An identity 

relating the balancing numbers and the silver ratio can be 

obtained as a byproduct. 
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BALANCING NUMBERS 

 Balancing numbers  𝑩 and balancers 𝑹 are solutions of the 

Diophantine equation 

 

 𝟏 + 𝟐 +⋯+ 𝑩− 𝟏 = 𝑩 + 𝟏 + 𝑩 + 𝟐 +⋯+ 𝑩+ 𝑹 . 
 

Thus, 𝟔, 𝟑𝟓 and 𝟐𝟎𝟒 are the first three balancing numbers with 

balancers 𝟐, 𝟏𝟒 and 𝟖𝟒 respectively. 

 
The definition of balancing numbers is due to Behera and Panda: On the square roots of 

triangular numbers, Fib. Quart., 37(1999), 98-205. 

 

The concept of balancing numbers also coincides with  the concept of numerical centers 

described in a paper by  R. Finkelstein, The house problem, Amer. Math. Monthly, 72, 1965. 
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BALANCING NUMBERS 
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Notation: The 𝒏𝒕𝒉 balancing number is denoted by 𝑩𝒏 . 
 

The number 

 𝑪𝒏= 𝟖𝑩𝒏
𝟐 + 𝟏 

 is called the 𝒏𝒕𝒉 Lucas balancing number. 
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BALANCING NUMBERS 

Recurrence Relations 

Balancing Numbers Satisfy 

 

𝑩𝒏+𝟏 = 𝟔𝑩𝒏 − 𝑩𝒏−𝟏 ;   𝑩𝟏 = 𝟏,𝑩𝟐 = 𝟔. 
 

Lucas Balancing Numbers Satisfy 

 

 𝑪𝒏+𝟏 = 𝟔𝑪𝒏 − 𝑪𝒏−𝟏 ;   𝑪𝟏 = 𝟑,𝑩𝟐 = 𝟏𝟕. 
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BALANCING NUMBERS 

Balancing numbers behave like natural numbers: 
 

𝑩𝟏 +𝑩𝟑 +⋯+𝑩𝟐𝒏−𝟏 = 𝑩𝒏
𝟐 

and 
𝑩𝟐 +𝑩𝟒 +⋯+𝑩𝟐𝒏 = 𝑩𝒏 ∙ 𝑩𝒏+𝟏 
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COBALANCING NUMBERS 

 Cobalancing numbers  𝒃 and cobalancers 𝒓 are solutions of the 

Diophantine equation 

 

 𝟏 + 𝟐 +⋯+ 𝒃 = 𝒃 + 𝟏 + 𝒃 + 𝟐 +⋯+ 𝒃 + 𝒓 . 
 

𝟐, 𝟏𝟒 and 𝟖𝟒 are the first three cobalancing numbers with 

cobalancers 𝟏, 𝟔 and 𝟑𝟓 respectively. 

 
The definition of cobalancing numbers is due to  G.K. Panda and P.K. Ray, Cobalancing 

numbers and cobalancers, Int. J. Math. Math. Sci. 8 (2005), 1189–1200. 
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Cobalancing numbers 

 
If  𝒃   is a cobalancing number then 𝟖𝒃𝟐 + 𝟖𝒃 + 𝟏 is a perfect 

square and its positive square root is known as a Lucas-cobalancing 

numbers. The 𝑛-th cobalancing and Lucas-cobalancing numbers are 

denoted by 𝑏𝑛 and 𝑐𝑛 respectively and satisfy the binary 

recurrences 

𝒃𝒏+𝟏 = 𝟔𝒃𝒏 − 𝒃𝒏−𝟏 + 𝟐, 𝒄𝒏+𝟏= 𝟔𝒄𝒏 − 𝒄𝒏−𝟏 

with initial terms 𝑏0 = 𝑏1 = 0, 𝑐0 = −1, 𝑐1 = 1. 

 

Further, there is a sum formula relating balancing and cobalancing 

numbers: 𝑩𝟏 + 𝑩𝟐 +⋯+𝑩𝒏 =
𝒃𝒏+𝟏

𝟐
. 

 

 



Balancing-like sequences 

The Balancing-like sequences are recurrent sequences 

defined as 

 

𝒙𝒏+𝟏 = 𝑨𝒙𝒏 − 𝒙𝒏−𝟏 ;   𝒙𝟎 = 𝟎, 𝒙𝟏 = 𝟏 (𝑨 > 𝟐) 

 
The balancing-like sequence  corresponding to 𝑨 = 𝟔  is the balancing 

sequence.  Further, the balancing-like sequence with 𝑨 = 𝟑 coincides with 

the sequence of even indexed Fibonacci numbers. These sequences 

satisfies all important properties of the balancing numbers. 
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Markov chains 

A discrete time Markov chain is a stochastic process 𝑋𝑘 , where 𝑘 runs 

over nonnegative integers, such that 

 

 𝑃𝑟 𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖, 𝑋𝑘−1 = 𝑙, … , 𝑋0 = 𝑟 = 𝑃𝑟 𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖 .  

 

In other words, the future state of the process  depends on the present 

state and not on the past states. 

 

Stationary transition probabilities 

When the probability 𝑃𝑟 𝑋𝑘+1 = 𝑗|𝑋𝑘 = 𝑖  depends only on 𝑖 and 𝑗 and 

not on 𝑘, then the Markov chain 𝑋𝑘  is said to have stationary transition 

probabilities.  
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Markov Chains 

 

The matrix 𝑷 = 𝑷𝒊𝒋  is known as the (one step) transition probability matrix of the 

Markov chain 𝑋𝑘  . The probability 𝑃𝑖𝑗
(𝑛)

= 𝑃𝑟 𝑋𝑘+𝑛 = 𝑗|𝑋𝑘 = 𝑖   is known as an 𝒏-

step transition probability which is the probability of passing from state 𝑖 to state 𝑗 in 

𝑛 transitions. The matrix 𝑷(𝒏) = 𝑃𝑖𝑗
(𝑛)

 is known as an 𝑛-step transition probability 

matrix. It is well-known that 𝑷(𝒏) = 𝑷𝒏. 

 

Steady state probability vector 

The limiting probability  𝝅𝒋 = 𝒍𝒊𝒎
𝒏→∞

𝑷𝒊𝒋
(𝒏)

 is known as a steady state probabilities of the 

Markov chain 𝑋𝑘.  

 

Writting 𝝅 = 𝝅𝟎, 𝝅𝟏, 𝝅𝟐, … , the steady state  transition probabilities can be 

calculated from the  relationships 𝝅 = 𝝅𝑷 with 𝝅𝟎 + 𝝅𝟏 + 𝝅𝟐 +⋯ = 𝟏. 
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BALANCING NUMBERS IN STEADY STATE PROBABILITIES 
 

Consider a village that can accommodate a population of size not exceeding 𝑛 − 1. Let 

𝑋𝑘 be the population of the village corresponding to some discrete time 𝑘. The population 

of the village  increases by one for each birth, decrease by one for each death and become 

zero when the whole population is migrated to a different destination.  

 

Then 𝑿𝒌 𝒌=𝟎
𝒏−𝟏 can be viewed as a Markov Chain and let us assign the transition 

probabilities as 

𝑃𝑖,𝑖+1 = 𝑃𝑖,𝑖−1 =
1

6
   if    1 ≤ 𝑖 ≤ 𝑛 − 2,

𝑃01 =
1

6
, 𝑃00 = 𝑃10 = 𝑃𝑛−1,0 =

5

6
,  

𝑃𝑖0 =
2

3
 𝑖𝑓 2 ≤ 𝑖 ≤ 𝑛 − 2  

𝑃𝑖𝑗 = 0 ,  otherwise  
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The transition probability matrix is given by 

 

𝑷 =

5/6 1/6 0 0 0 ⋯ 0 0
5/6 0 1/6 0 0 ⋯ 0 0
2/3 1/6 0 1/6 0 ⋯ 0 0
2/3 0 1/6 0 1/6 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

2/3 0 0 0 0 ⋱ 0 1/6
5/6 0 0 0 0 ⋱ 1/6 0

 ….(1) 

 

and the vector 𝝅 = 𝝅𝟎, 𝝅𝟏, 𝝅𝟐, … , 𝝅𝒏−𝟏  representing the steady state probabilities of 

𝑿𝒌 𝒌=𝟎
∞  can be calculated from the relation 

 

 𝜋 = 𝜋𝑷  
subject to the condition 

 𝜋0 + 𝜋1 +⋯+ 𝜋𝑛−1 = 1.  
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BALANCING NUMBERS IN STEADY STATE PROBABILITIES 

 

Result I: The steady state probability vector 𝝅 corresponding to the 

transition  probability  matrix 𝑷 in (1) is given by  

 

 𝝅 =
𝟐𝑩𝒏

𝒃𝒏+𝟏
,
𝟐𝑩𝒏−𝟏

𝒃𝒏+𝟏
, ⋯ ,

𝟐𝑩𝟏

𝒃𝒏+𝟏
 

 

where  𝑩𝒏  is the 𝑛-th balancing numbers and 𝒃𝒏  is the n-th 

cobalancing  numbers.  
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The proof is as follows: 

 

 

The equation 𝜋 = 𝜋𝑷 gives 

 

𝜋𝑛−1 =
1

6
𝜋𝑛−2, 𝜋𝑖 =

1

6
𝜋𝑖−1 +

1

6
𝜋𝑖+1, 𝑖 = 1,2, … , 𝑛 − 2. 

 

and on rearranging, we get 

 

     𝜋𝑛−2= 6𝜋𝑛−1, 𝜋𝑖−1 = 6𝜋𝑖 − 𝜋𝑖+1, 𝑖 = 1,2, … , 𝑛 − 2.    
 

We ignoring the first equation  

𝜋0 =
5

6
𝜋0 +

5

6
𝜋1 +

2

3
𝜋2 +⋯+ 𝜋𝑛−2 +

5

6
𝜋𝑛−1  

and in stead use 

𝜋0 + 𝜋1 +⋯+ 𝜋𝑛−1 = 1 
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THE PROOF CONTINUES… 

 

Now setting 𝜋𝑛−1 = 𝑘, one can rewrite the system of equations as 

 

𝜋𝑛−1 = 𝑘 = 𝑘𝐵1
𝜋𝑛−2 = 6𝑘 = 𝑘𝐵2

𝜋𝑖−1 = 6𝜋𝑖 − 𝜋𝑖+1, 𝑖 = 1,2,… , 𝑛 − 2
…….(2) 

 

 

The main aim is to show that 𝜋𝑖 = 𝑘𝐵𝑛−𝑖 for 𝑖 = 0,1,2,… , 𝑛 − 1 

using mathematical induction. 
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THE PROOF CONTINUES… 

From (2) we can see that the assertion is true for 𝑖 = 0,1. Assume 

that the assertion is true for 𝑖 = 𝑗 ≤ 𝑛 − 1,  i.e., 𝜋𝑗 = 𝑘𝐵𝑛−𝑗.  In 

view of the equation 

 𝝅𝒋−𝟏 = 𝟔𝝅𝒋 − 𝝅𝒋+𝟏,  

we have 

𝝅𝒋+𝟏 = 𝟔𝒌𝑩𝒏−𝒋 − 𝒌𝑩𝒏−𝒋+𝟏 = 𝒌 𝟔𝑩𝒏−𝒋 − 𝑩𝒏−𝒋+𝟏  

 

and by the recurrence relation of balancing numbers, it follows that 

 𝝅𝒋+𝟏 = 𝒌𝑩𝒏−𝒋−𝟏 = 𝒌𝑩𝒏−(𝒋+𝟏)  

and the assertion is true for 𝑖 = 𝑗 + 1 ≤ 𝑛 − 1. 



G . K .  P A N D A ,  N A T I O N A L  I N S T I T U T E  O F  T E C H N O L O G Y  

R O U R K E L A ,  O D I S H A ,  I N D I A  20 

THE PROOF CONTINUES… 

 

Further,  𝜋𝑖
𝑛−1
𝑖=0 = 1 implies that  

𝑘 =
1

 𝐵𝑙
𝑛
𝑙=1

.  

Hence, 

                 𝜋𝑖 =
2𝐵𝑛−𝑖
 𝐵𝑙
𝑛
𝑙=1

 𝑓𝑜𝑟 𝑖 = 0,1,⋯ , 𝑛 − 1. 

 

Since  𝐵𝑙
𝑛
𝑙=1 =

𝑏𝑛+1

2
, the proof is complete.  ∎ 
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Another Transition Probability Matrix Leading to the Same Steady State 

Probabilities 

Result II:  If  0 < 𝑞 ≤ 1/6, then  transition  probability  matrix 

 

            𝑷(𝑞) =

1 − 𝑞 𝑞 0 0 0 ⋯ 0 0
5𝑞 1 − 6𝑞 𝑞 0 0 ⋯ 0 0
4𝑞 𝑞 1 − 6𝑞 𝑞 0 ⋯ 0 0
4𝑞 0 𝑞 1 − 6𝑞 𝑞 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
4𝑞 0 0 0 0 ⋱ 1 − 6𝑞 𝑞
5𝑞 0 0 0 0 ⋱ 𝑞 1 − 6𝑞

 

results  in  the  same  steady  state  probabilities  given  by  

 

 𝝅 =
𝟐𝑩𝒏

𝒃𝒏+𝟏
,
𝟐𝑩𝒏−𝟏

𝒃𝒏+𝟏
, ⋯ ,

𝟐𝑩𝟏

𝒃𝒏+𝟏
 . 
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Another Transition Probability Matrix with Balancing  Numbers in the Steady 

State Probabilities 

Result III: Similarly, the steady state probability vector corresponding to the following  

transition probability matrix  

𝑷 =

5/6 1/6 0 0 0 ⋯ 0 0
5/6 0 1/6 0 0 ⋯ 0 0
2/3 1/6 0 1/6 0 ⋯ 0 0
2/3 0 1/6 0 1/6 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

2/3 0 0 0 0 ⋱ 0 1/6
2/3 0 0 0 0 ⋱ 1/6 1/6

,  

is given by 

𝜋 = 𝜋0, 𝜋1, 𝜋2, … , 𝜋𝑛−1  

 where    𝜋𝑖 =
𝐵𝑛+𝑖−𝐵𝑛+𝑖−1

𝐵𝑛
 𝑓𝑜𝑟 𝑖 = 0,1,⋯ , 𝑛 − 1. 
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LUCAS-BALANCING NUMBERS IN STEADY STATE PROBABILITIES 
 

Result IV: The steady state probability vector corresponding to the transition 

probability matrix  

𝑷 =

5/6 1/6 0 0 0 ⋯ 0 0
5/6 0 1/6 0 0 ⋯ 0 0
2/3 1/6 0 1/6 0 ⋯ 0 0
2/3 0 1/6 0 1/6 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

2/3 0 0 0 0 ⋱ 0 1/6
1/3 0 0 0 0 ⋱ 1/6 1/2

   

 

is given by 𝜋 = 𝜋0, 𝜋1, 𝜋2, … , 𝜋𝑛−1  where 𝜋𝑖 =
𝐶𝑛−𝑖
 𝐶𝑖
𝑛
𝑖=1

 for 𝑖 = 0,1,⋯ , 𝑛 − 1  and 

𝐶𝑖 denotes the 𝑖-th Lucas-balancing number. 
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Another Transition Probability Matrix with Lucas Balancing Numbers in the Steady 

State Probabilities 

Result V: If 𝑞 is a real number such that 0 < 𝑞 ≤ 1/6, then the transition probability 

matrix 

 

𝑷(𝑞) =

1 − 𝑞 𝑞 0 0 0 ⋯ 0 0
5𝑞 1 − 6𝑞 𝑞 0 0 ⋯ 0 0
4𝑞 𝑞 1 − 6𝑞 𝑞 0 ⋯ 0 0
4𝑞 0 𝑞 1 − 6𝑞 𝑞 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
4𝑞 0 0 0 0 ⋱ 1 − 6𝑞 𝑞
2𝑞 0 0 0 0 ⋱ 𝑞 1 − 3𝑞

  

results in the same steady state probabilities 

𝜋𝑖 =
𝐶𝑛−𝑖
 𝐶𝑖
𝑛
𝑖=1

 for 𝑖 = 0,1,⋯ , 𝑛 − 1. 
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LUCAS-COBALANCING NUMBERS IN STEADY STATE PROBABILITIES 
 

Result VI: The steady state probability vector corresponding to the transition probability 

matrix 𝑷 = 𝑷𝒊𝒋 , 

  𝑷 =

5/6 1/6 0 0 0 ⋯ 0 0
5/6 0 1/6 0 0 ⋯ 0 0
2/3 1/6 0 1/6 0 ⋯ 0 0
2/3 0 1/6 0 1/6 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

2/3 0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
16/21 0 0 0 0 ⋱ 0 1/14
1/3 0 0 0 0 ⋱ 1/6 1/2

    

is given by  

𝜋 =
𝑐𝑛

 𝑐𝑖
𝑛
𝑖=1

,
𝑐𝑛−1
 𝑐𝑖
𝑛
𝑖=1

, ⋯ ,
𝑐1

 𝑐𝑖
𝑛
𝑖=1

 

 

 where  𝑐𝑛 denotes the 𝑛𝑡ℎ Lucas-cobalancing number. 
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SILVER RATIO IN STEADY STATE PROBABILITIES OF MARKOV CHAINS WITH 

INFINITE STATE SPACES 

 

Result VII: In this section, we consider a Markov chain having the infinite state space 

0,1,2, …  and transition probability matrix 𝑃 = 𝑃𝑖𝑗   

 

𝑷 =

5/6 1/6 0 0 0 ⋯
5/6 0 1/6 0 0 ⋯
2/3 1/6 0 1/6 0 ⋯
2/3 0 1/6 0 1/6 ⋱
⋮ ⋮ ⋱ ⋱ ⋱ ⋱

…… (3) 

The steady state probability vector corresponding is 𝜋 = 𝜋0, 𝜋1, 𝜋2, …  where  

 

𝜋𝑖 = 𝛽𝑖 − 𝛽𝑖+1, 𝑖 = 0,1,2, … and 𝛽 = 3 − 2 2. 

 

[Observe that 𝛽 =
1

1+ 2
2  and the ratio 1 + 2: 1 is known as the silver ratio.] 
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The proof  proceeds as follows: 

Using the identity 𝝅 = 𝝅𝑷, the balance equations for the calculation of steady 

state probabilities are given by 

 

 
𝜋0 =

5

6
𝜋0 +

5

6
𝜋1 +

2

3
𝜋2 + 𝜋3 +⋯ ,

𝜋𝑖 =
1

6
𝜋𝑖−1 +

1

6
𝜋𝑖+1 for 𝑖 ≥ 1. 

 

On simplification, we get 

 
𝜋1 = 5𝜋0 − 4,
𝜋2 = 29𝜋0 − 24,
𝜋3 = 169𝜋0 − 140

  

 

and using mathematical induction, it can be seen that 

 

     𝜋𝑖 = 𝐵𝑖+1 − 𝐵𝑖 𝜋0 − 4𝐵𝑖 , 𝑖 = 1,2, …                             …   (4) 
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PROOF CONTINUES… 

Further from Result III, it can be seen that 

 

 𝜋0 = lim
𝑛→∞

𝐵𝑛−𝐵𝑛−1

𝐵𝑛
=1 − lim

𝑛→∞

𝐵𝑛−1

𝐵𝑛
= 1 − 3 − 2 2 = 1 − 𝛽 

 

 𝜋1 = lim
𝑛→∞

𝐵𝑛−1−𝐵𝑛−2

𝐵𝑛
= lim

𝑛→∞

𝐵𝑛−1

𝐵𝑛
−

𝐵𝑛−2

𝐵𝑛−1
∙
𝐵𝑛−1

𝐵𝑛
= 𝛽 − 𝛽2, 

 

 𝜋2 = lim
𝑛→∞

𝐵𝑛−2−𝐵𝑛−3

𝐵𝑛
= 𝛽2 − 𝛽3, 

 
and in general  

𝝅𝒊 = 𝒍𝒊𝒎
𝒏→∞

𝑩𝒏−𝒊−𝟏 − 𝑩𝒏−𝒊

𝑩𝒏
=𝜷𝒊 − 𝜷𝒊+𝟏, 𝒊 = 𝟎, 𝟏, 𝟐, …  
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A balancing  identity  using steady state probabilities 
 

𝜷𝒏+𝟏 = 𝜷𝑩𝒏+𝟏 − 𝑩𝒏, 𝒏 = 𝟏, 𝟐, …  where 𝜷 = 𝟑 − 𝟐 𝟐. 

 

From the previous calculation, 𝜋0 = 1 − 𝛽 and 𝜋𝑖 = 𝛽𝑖 − 𝛽𝑖+1=𝛽𝑖(1 − 𝛽). Also from (4) 

we have 

𝜋𝑖 = 𝐵𝑖+1 − 𝐵𝑖 𝜋0 − 4𝐵𝑖 , 𝑖 = 1,2, … 

 

Substituting the value of 𝜋0, we get 

 

𝛽𝑖 1 − 𝛽 =  𝐵𝑖+1 − 𝐵𝑖 (1 − 𝛽) − 4𝐵𝑖. 
Thus,  

𝛽𝑖 = 𝐵𝑖+1 − 𝐵𝑖 −
4𝐵𝑖
1 − 𝛽

= 𝐵𝑖+1 − 3 + 2 2 𝐵𝑖 = 𝐵𝑖+1 −
𝐵𝑖
𝛽

 

from which the above identity follows. 
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BALANCING-LIKE NUMBERS IN THE STEADY STATE PROBABILITIES OF MARKOV 

CHAINS 

Result VIII: For the 𝑛 × 𝑛 transition probability matrix 𝑷(𝐴)  
 

𝑷(𝐴) =

1 − 1
𝐴

1
𝐴

0 0 0 ⋯ 0 0

1 − 1
𝐴 0 1

𝐴 0 0 ⋯ 0 0

1 − 2
𝐴

1
𝐴 0 1

𝐴 0 ⋯ 0 0

1 − 2
𝐴 0 1

𝐴 0 1
𝐴 ⋱ 0 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
1 − 2

𝐴 0 0 0 0 ⋱ 0 1
𝐴

1 − 1
𝐴 0 0 0 0 ⋱ 1

𝐴 0

 

 

 

the steady state probability vector is given by   𝜋 = 𝜋0, 𝜋1, 𝜋2, … , 𝜋𝑛−1  where  

  
𝜋𝑖 =

𝑥𝑛−𝑖
 𝑥𝑖
𝑛
𝑖=1

 𝑓𝑜𝑟 𝑖 = 0,1,⋯ , 𝑛 − 1. 
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Another Transition Probability Matrix with Balancing-Like  Numbers in the Steady 

State Probabilities 

Result IX: If 𝑞 is any real number such that 0 < 𝑞 ≤
1

𝐴
, then the transition probability 

matrix 

𝑷 𝑞 =

1 − 𝑞 𝑞 0 0 0 ⋯ 0 0

𝐴 − 1 𝑞 1 − 𝐴𝑞 𝑞 0 0 ⋯ 0 0

𝐴 − 2 𝑞 𝑞 1 − 𝐴𝑞 𝑞 0 ⋯ 0 0

𝐴 − 2 𝑞 0 𝑞 1 − 𝐴𝑞 𝑞 ⋱ 0 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

𝐴 − 2 𝑞 0 0 0 0 ⋱ 1 − 𝐴𝑞 𝑞

𝐴 − 1 𝑞 0 0 0 0 ⋱ 𝑞 1 − 𝐴𝑞

, 

 

gives the same steady state probabilities 

  
𝝅𝒊 =

𝒙𝒏−𝒊
 𝒙𝒊
𝒏
𝒊=𝟏

 𝒇𝒐𝒓 𝒊 = 𝟎, 𝟏,⋯ , 𝒏 − 𝟏. 
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CONCLUSION 
 

 

In this work, we established the appearance of balancing and related numbers sequence 

in the steady state probabilities of some Markov chains.  We also noticed that, in many 

instances, a class of transition probability matrices gives rise to same steady state 

probabilities. Using the balance equations, we also derived an identity relating the 

balancing numbers and the silver ratio. Some problems in this area are still open. We 

encourage the readers to construct transition probability matrices whose steady state 

vectors would explore some other number sequences.   In this process, they may be able 

to prove some identities using the balance equations.  
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