ANALYSIS OF REWETTING OF AN INFINITE TUBE
BY NUMERICAL FOURIER INVERSION
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A semi-analytical model for the two-dimensional quasi—steady conduction
equation, governing conduction controlled rewetting of an infinite tube, has been
suggested. The solution yields the temperature field as a function of various input
model parameters such as Peclet number, Biot number and radius ratio of the tube.
Unlike earlier investigations, the present semi-analytical model predicts the
temperature field for the entire domain of a tube, employing the Wiener—Hopf
technique and by inverse discrete Fourier transform (IDFT) algorithm.
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Introduction

The process of rewetting of hot surfaces is of practical importance in nuclear and
metallurgical industries. For instance, in a postulated loss—of-coolant accident (LOCA) of a
nuclear reactor, the overheated rod clusters are cooled down by the emergency core cooling water
which are introduced into the core in the form of either top spray or bottom flooding. However,
the injected coolant does not immediately wet the cladding surface because a stable vapor blanket
would prevent the liquid—solid contact. The maximum surface temperature at which the coolant
establishes contact with the hot surface is the rewetting or quench front temperature. When the
cladding surface is below the quench front temperature, rewetting occurs. The upstream end of
the solid (wet region) is cooled by convection to the contacting liquid, while its downstream (dry
region) is cooled by heat transfer to a mixture of vapor and liquid droplets (precursory cooling).
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The rewetting model for a two-dimensional two—~region heat transfer with a step change in
heat transfer coefficient at the quench front has been solved for a single slab [1-3], for a
composite slab [4], for a single rod [5] and for a composite cylinder [6]. In the single tube/slab
model the dryside is considered to be adiabatic, whereas in case of a composite tube/slab model a
three layer composite is considered to simulate the fuel and the cladding separated by a gas filled
gap between them. The rewetting model in a plate geometry with a uniform boundary heat flux
has been solved by Chan and Zhang [7]. The solution methods commonly employed are either
separation of variables or Wiener—Hopf technique and the solutions have been obtained for either
quench front temperature or quench front velocity. Reported literature on analytical
investigations of rewetting indicates that Wiener—Hopf solution for various rewetting models has
been obtained only for the quench front temperature. In the present analysis, however, a
semi-analytical model has been suggested so as to obtain the temperature distribution in the

entire physical domain, by numerical Fourier inversion.

In the present study, the physical system consists of an infinitely extended vertical tube with
outer surface flooded and the inside surface insulated. The model assumes a constant heat
transfer coefficient for the wet region while the dry region is assumed to be adiabatic. The
solution procedure proposed herewith generally consists of two steps: first, the governing
equation with its associated boundary conditions is solved in a complex Fourier plane employing
the Wiener—Hopf technique. Second, the temperature solution so obtained is then inverted back
to its physical plane by using the IDFT algorithm.

Mathematical Model

The two—dimensional transient heat conduction equation for the tube (Fig.1) is
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where L is the length of the tube and R), R are inner and outer radius of the tube. The density,
specific heat and thermal conductivity of the tube material are p, C and & respectively. The origin
of the coordinate frame is at the bottom point on the axis of the tube. To convert this transient
equation into a quasi—steady state equation, the following moving coordinate system is used:

R=R Z=Z-ut



where u is the constant quench front velocity and R and Z are radial and axial coordinates
respectively (Fig.1). Thus the quasi-steady heat conduction equation in a coordinate systeni
moving with the quench front is
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In the present analysis, the heat transfer coefficient 7 is assumed to be constant over the entire
wet region. The dry region and inner core of the tube are assumed to be adiabatic. The coolant
temperature is taken to be equal to its saturation temperature T;. Moreover, it is assumed that at
far upstream of the quench front (at Z — —wo), the tube has been quenched to a temperature T,
while the far pre—quenched zone (at Z - +) is still at its initial temperature Ty. The following

non—dimensional variables are then introduced.
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Equation (2) can be expressed in the following dimensionless form
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Physical domain of the infinite tube. Common strip of analyticity in the complex

Fourier plane.



The associated boundary conditions are

—a—r-=0 at r=3§ ~w<z<™

%-&»BiG:O at r=1 z<0

gr—e-=0 at r=1 z>0

6=0 at Z - —00

0=1 at Z—> +oo (5)

The non-dimensional quench front temperature defined by 6 = (Ty - T;) / (T, — T) = 6(1,0),

in which, Ty is the quench front temperature. The main objective of the present study is to
compute the quench front temperature 6y in terms of various input model parameters, namely,
Biot number Bi, Peclet number Pe and radius ratio 8. Also, the temperature distribution
elsewhere in the tube has been obtained by numerical Fourier inversion, for the prescribed values

of above model parameters.

Analytical Solution

In order to employ the Wiener—Hopf technique, Eq.(4) is first transformed with a new

dependent variable ¢, defined by 0(r,z) =1-o@(r,z)e *?, in which s=Pef2. The goveming

equation (Eq.(4)) then becomes
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The boundary conditions in Eq.(5) can be written sequentially as:
% =0 at r=39% —0<Z<®
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In the next step of the present analysis, Fourier transform is used to convert the partial
differential equation (Eq.(6)) to an ordinary differential equation. The Fourier transform is
defined by

O(,r) = B, () +O_(@r) = [o0r,2)e™dz ®)
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with ®_(a,r) = Icp(r,z)ei“’dz and ®_ (o,r) = IQ)(r,z)ei“zdz . The parameter a used above is

—o 0
a complex quantity. The far-field boundary conditions in Eq.(7) indicate that ¢(r, z) is of the
order exp(sz) at z —> —o, whereas @(r, z) is of the order exp(-sz) at z—>+w. The above two
conditions ensure that the functions ®,(a., r) and ®_(a, r) are analytic in the domains D, and D_
respectively. The domains D, and D_ are defined (Fig.2) in the entire complex domain as:
D, : Im(a)>—s and D : Im(e)< +s.
Applying the Fourier transform, Eq.(6) assumes the form
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in which y=(a’+s®)""2. The transformed boundary conditions are
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where prime denotes the transform of r—derivatives of ¢(r, z). The general solution of the second
order ordinary differential equation (Eq.(9)) is
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where I, K are zeroth—order modified Bessel functions of first and second kinds respectively.
Imposing the boundary conditions of Eq.(10) into Eq.(11) yields
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of first and second kinds respectively. The key step in successful implementation of Wiener-Hopf

and I, K are first—order modified Bessel functions

where f(y) =



technique depends on factorization of a function, which is analytic in a strip, into the product of
two functions that are analytic in the overlapping half—planes (D, and D.). In this regard, let
Bi
vf()
where the functions K.(at), K-(a) are analytic in the domains D, and D_ respectively. Now the
kernel function K(«), in connection with Eq.(12), is to be decomposed to Ki(o) and K (o) in

Ka)=K, () K_(a) =1+

(13)

accordance with Wiener—Hopf technique. This is accomplished by rearranging Eq.(12) to obtain
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In Eq.(14), each side characterizes the same ‘entire function’, through its representation in the
upper and lower halves of the a—plane. Since ®.(a,1) and ®_(c.,1) tend to zero at infinity in their
half-planes of analyticity, while K.(ot) and K(c) remain bounded, it tums out that the entire
function vanishes according to Liouville’s theorem. Hence, equating both sides of the Eq.(14) to

zero, @.(o,1) and ®_(a,1) are determined as
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The temperature distribution in the tube can be obtained by the inversion relation
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as specified in Eq.(15), the temperature field may be obtained by inverting its Fourier transform

in which, g(y) = . Using the expressions of ®,(a,1) and ®_(a,1),

(Eq.(16)) analytically. Such an attempt may become tedious because, in order to perform the
Fourier inversion, it would be necessary to evaluate the residues of d(a,1) function in its
complex a-plane. Alternatively, in the present paper this inversion has been carried out
numerically by employing the IDFT algorithm. In this regard, let a=w+ic, with 0< ¢ <s, Eq.(16)

is converted to
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where y = \/ (o + ic)2 +52 . Various numerical inversion methods exist in the literature. Among
them, the algorithm proposed by Gaver—Stehfest and the algorithm by Crump (based on Fourier

series) are often applied. In the present analysis, numerical inversion by discrete Fourier
transform is used. Based on this algorithm, the integral in Eq.(17) has been approximated by a
discrete sum to obtain
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where Aw=n/T* and T* is the time period of the periodic function. It can be seen that by taking
advantage of the symmetry property of y(a+ic), Eq.(18) can be reduced to following inversion
formula:
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Following Chu et al. [8], the parameter ¢ in Eq.(19) has to be so chosen that (s—c)z does not
exceed a specified value (usually 4 or 5). Expressions for the spectral coefficients wp and y,
appearing in Eq.(19) are tabulated in the Appendix.

Results and Discussion

Numerical values of dimensionless temperatures are obtained by evaluating Eq.(19), with B,
Pe and 3§ as input parameters. The infinite series in Eq.(19) is summed up to N terms such that a
convergence criterion of 0.001% change in value of y, has been achieved, below which the
summation series is truncated. Numerical computation of modified Bessel functions have been
carried out by using the polynomial expressions [9] for both real and complex arguments. In this
regard, it is informative to note that, the computation of fy) and g(y) warrant special attention.
Since the Bessel functions I, It become infinite and Ko, K) become vanishingly small at higher
values of arguments, they need to be evaluated with exponential scaling, The polynomial
coefficients, once the exponential factor is removed, do not pose any data overflow/underflow
problems. The temperature profiles are then plotted and depicted in graphical form.

Temperature profiles near the quench front are illustrated in Fig.3 for different Peclet numbers
with Bi=10, where quench front temperature is found to increase with increase in Peclet number.

With fixed material properties and dimensions, Pe and Bi represent the quench front velocity and



the heat transfer coefficient respectively. For a specified Biot number, quench front temperature
increases with increase m quench front velocity. This is because of the fact that a higher relative
velpcity between the tube and the coolant allows less time for sufficient heat transfer to take
place, resulting in a higher value of 6y. The above trend also reflects the fact that for the same
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rewetting rate, an increasing tube thermal diffusivity tends to reduce 6. Temperature profiles for
different Biot numbers with Pe=10 are shown in Fig.4, where quench front temperature is found
to decrease with increase in Bi. A higher Biot number results in a higher heat transfer coefficient,
which may cause to decrease 6. Moreover, the temperature gradient at the quench front increases
with increase in Pe in Fig.(3) and with increase in Bi in Fig.(4). This reveals the fact that axial
conduction across the quench front becomes more significant at higher values of heat transfer

coefficients and at higher quench front velocities.

The dependence of quench front temperature on radius ratio 8 is shown in Fig.(5), for fixed
Biot and Peclet numbers. Here 65 is found to increase with decrease in radius ratio. The thickness
of a tube increases with decrease in 8 and thereby its heat capacity also increases. Thus 6 is
expected to increase with decrease in 8 owing to larger amount of initial heat content in a thicker
tube. In the limiting case of a solid rod, where 3 is zero, quench front temperature assumes the
maximum value. Finally the present solution has been compared with analytical solutions of [6]
and a good agreement of data is observed in Fig.(6). Since number of terms » in the summation
series (Eq.(19)) increases with increase in Biot number, the accumulated round—off errors
(attributed to computation of the integrals involved in the spectral coefficients) may effect the
present solution. Nevertheless, the present model may be beneficial in predicting the temperature
distribution for an entire physical domain, whereas the aforementioned analytical solution is

limited to quench front location only.

Conclusion

e,

A semi-analytical solution for the conduction controlled rewetting of an infinite tube has been
obtained, employing the Wiener—Hopf technique and its numerical Fourier inversion by IDFT
algorithm. The temperature distribution in the tube are plotted for a wide range of input model
parameters. In particular, the parametric dependence of quench front temperature on various
model parameters are shown in graphical form. In general, quench front temperature is found to
increase with increase in Peclet number and with decrease in Biot number and radius ratio of the
tube. It is felt that the present solution procedure, in principle, may be extended to more involved
problems that include precursory cooling in the dry region or heat flux in the core in various

other geometries.
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