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The rewetting model for a two-dimensional two-region heat transfer with a step change in 

heat transfer coefficient at the quench front has been solved for a single slab [l-3], for a 

composite slab [4], for a single rod [5] and for a composite cylinder [6]. In the single tube/slab 

model the dryside is considered to be adiabatic, whereas in case of a composite tube/slab model a 

three layer composite is considered to simulate the fuel and the cladding separated by a gas filled 

gap between them. The rewetting model in a plate geometry with a uniform boundary heat flux 

has been solved by Chan and Zhang [7]. The solution methods commonly employed are either 

separation of variables or Wiener-Hopf technique and the solutions have been obtained for either 

quench front temperature or quench front velocity. Reported literature on analytical 

investigations of rewetting indicates that Wiener-Hopf solution for various rewetting models has 

been obtained only for the quench front temperature. In the present analysis, however, a 

semi-analytical model has been suggested so as to obtain the temperature distribution in the 

entire physical domain, by numerical Fourier inversion. 

In the present study, the physical system consists of an infinitely extended vertical tube with 

outer surface flooded and the inside surface insulated. The model assumes a constant heat 

transfer coefficient for the wet region while the dry region is assumed to be adiabatic. The 

solution procedure proposed herewith generally consists of two steps: first, the governing 

equation with its associated boundary conditions is solved in a complex Fourier plane employing 

the Wiener-Hopf technique. Second, the temperature solution so obtained is then inverted back 

to its physical plane by using the IDFT algorithm. 

Mathematical Model 

The two-dimensional transient heat conduction equation for the tube (Fig.1) is 

1 a -- 
RaR 

RI c R < R2 O<Z<L L-boo (1) 

where L is the length of the tube and RI, R2 are inner and outer radius of the tube. The density, 

specific heat and thermal conductivity of the tube material are p, C and k respectively. The origin 

of the coordinate frame is at the bottom point on the axis of the tube. To convert this transient 

equation into a quasi-steady state equation, the following moving coordinate system is used: 

i?=R Z=z-ut 
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where u is the constant quench front velocity and w and z are radial and axial Coordinates 

respectively (Fig.l). Thus the quasi-steady heat conduction equation in a coordinate system 

moving with the quench front is 

R, c&R2 -co<z<w (2) 

In the present analysis, the heat transfer coefficient h is assumed to be constant over the entire 

wet region. The dry region and inner core of the tube are assumed to be adiabatic. The coolant 

temperature is taken to be equal to its saturation temperature TS. Moreover, it is assumed that at 

far upstream of the quench front (at z + -CO), the tube has been quenched to a temperature T,, 

while the far pm-quenched zone (at z + +a~) is still at its initial temperature T,. The following 

non-dimensional variables are then introduced. 

K - z r=-, z=-, 

R2 R2 

g-T-T”, 
Tv -T, 

Bi=EL, ,=E!%, 6=!!_ 
k k R2 

Equation (2) can be expressed in the following dimensionless form 

la LX3 -- r- 
( 1 

+a28+&LO 
r i?r & a22 & 

6crcl --oo<z<co 

FIG.1 
Physical domain of the infinite tube. 

(3) 

(4) 

FIG.2 
Common strip of analyticity in the complex 

Fourier plane. 
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The associated boundary conditions are 

-- E-0 at r=6 --oo<z<co 

$+BiB=O at r=l z<o 

?!&o at r= 1 z>o 

8=0 at Z-_)--ao 

8=1 at Z-N+co (5) 

The non-dimensional quench front temperature defined by 00 = (TO - Ts) I (T, - q) = e(l,O) , 

in which, TO is the quench front temperature. The main objective of the present study is to 

compute the quench front temperature 80 in terms of various input ‘model parameters, namely, 

Biot number Bi, Peclet number Pe and radius ratio 6. Also, the temperature distribution 

elsewhere in the tube has been obtained by numerical Fourier inversion, for the prescribed values 

of above model parameters. 

Analvtical Solution 

In order to employ the Wiener-Hopf technique, l%+(4) is first transformed with a new 

dependent variable cp, defined by 8(r,z) = 1 -cp(r,z)edsz, in which s=Pe/2. The governing 

equation @q.(4)) then becomes 

la acp ( ) a2q 2 
rz rar +2-s cp=O 6cr<l --oo<z<Q) 

az 
The boundary conditions in Eq.(5) can be written sequentially as: 

$0 at r=6 --oo<z<oo 

& dr + Bicp = Bie” at r=l z-co 

acp=O at r=l z>o 
ar 

cp =e” at z+--oo 

cp=o at z++ao 

(6) 

(7) 
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In the next step of the present analysis, Fourier transform is used to convert the partial 

differential equation @q.(6)) to an ordinary differentisl equation. The Fourier transform is 

defined by 

@(a~)= @+(a,r)+(O_(a,r)= &(r,z)eimdz (8) 

--a0 

0 

with @_(a,r)= [q(r,z)eimdz and cP+(a,r) = j&,z)e’U&. The parameter a used above is 

-C0 0 

a complex quantity. The far-field boundary conditions in Eq.(‘Z) indicate that cp(r, z) is of the 

order exp(sz) at z + --co, whereas cp(r, z) is of the order exp(-sz) at z++co. The above two 

conditions ensure that the functions @+(a, r) and @_(a, r) sre analytic in the domains D+ and D_ 

respectively. The domains D+ and D_ sre defined (Fig.2) in the entire complex domain ss: 

D+ : h(a)>+ and D_ : Im(a)< +s. 

Applying the Fourier transform, Eq.(6) sssumes the form 

la m -- r- 
( 1 r& at 

-y%=o (9) 

in which F(a2+?)rn. The transformed boundsry conditions are 

W(a,6) = 0 

~(a,l)+ Bi(D_(a,l) = --&Bi 

0; (a,l) = 0 (10) 

where prime denotes the transform of r-derivatives of cp(r, z). The general solution of the second 

order ordinary differential equation @q.(9)) is 

@(a&= G(a)Z0(~r)+C;!(a)K0(yr) (11) 

where Zo, KO sre zero&order modified Bessel functions of first and second kinds respectively. 

Imposing the boundary conditions of Eq.(lO) into Eq.(l 1) yields 

(12) 
Bi 

0+(a,l)+ I+- 
[ 1 Bi 

rflr) 
0_(a,l) = --!- - 

.[ I a-is rf(r) 

where f(r) = h(Y)GW- 4cYwl(~) 

Zo(Y)~l(‘16)+Zl(Y~)~o(Y) 
and Zr, Kr are first-order modified Bessel functions 

of tirst and second kinds respectively. The key step in successful implementation of Wiener-Hopf 
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technique depends on factorization of a function, which is analytic in a strip, into the product of 

two functions that rue analytic in the overlapping half-planes (D+ and D_). In this regard, let 

Bi 
K(a)=K+(a)K_(a)=l+- 

rf(r) 

where the functions K+(a), K_(a) are snalytic in the domains D+ and D_ respectively. Now the 

kernel function K(a), in connection with Eq.(12), is to be decomposed to Z&(a) and K_(a) in 

accordsnce with Wiener-Hopf technique. This is accomplished by rearrsnging Q.(12) to obtain 

I 
=-@_(a,l)K_(a)-J- 

1 

a -is 
K_(a)-- 

K+ (is) 3 
(14) 

In Eq.(14), each side characterizes the same ‘entire function’, through its representation in the 

upper and lower halves of the a-plane. Since cD+(a,l) and O_(a,l) tend to zero at infinity in their 

half-planes of anslyticity, while K+(a) and K-(a) remain bounded, it turns out that the entire 

function vanishes according to Liouville’s theorem. Hence, equating both sides of the Eq.( 14) to 

zero, @+(a,l) and Q_(a,l) are determined as 

K+(a) O+(a,l)=& l-- , 
-[ I K+ (is) 

O-(a,l) =-A 
. [ 

l- 
1 

K- (a) K+ (is) 1 (1% 
The temperature distribution in the tube can be obtained by the inversion relation 

+co 
CI(r,z) = 1 -g jUi(a,l)g(y)e-iwda 

--oD 
(16) 

in which, g(y) = 10 WV4 (Y@ + 4 WWo (~4 
Io(r)4(+) + Il(~s)Ko(y) 

. Using the expressions of O+(a,l) and Q)_(a,l), 

ss specified in Eq.( 15), the temperature field may be obtained by inverting its Fourier trsnsform 

(Eq.(16)) analytically. Such sn attempt may become tedious because, in order to perform the 

Fourier inversion, it would be necessary to evaluate the residues of O(a,l) function in its 

complex a-plane. Alternatively, in the present paper this inversion hss been carried out 

numerically by employing the IDFT algorithm. In this regard, let a=w+ic, with O< c CS, Eq.(16) 

is converted to 

8(r,z) = l- 
1 +m 

2&-C)Z I 
Q)(o + ic,l)g(y)e-i~zdo (17) 
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where y = J777 (o + zc) + s . Various numerical inversion methods exist in the literature. Among 

them, the algorithm proposed by Gaver-Stehfest and the algorithm by Crump (based on Fourier 

series) are often applied. In the present analysis, numerical inversion by discrete Fourier 

transform is used. Based on this algorithm, the integral in Eq.(17) has been approximated by a 

discrete sum to obtain 

8(r,z)=l- l 
2.&JS-& 

i ‘I-‘y(o + i++ Ao 
n=-co 

(18) 

where Aw=n/T* and T* is the time period of the periodic function. It can be seen that by taking 

advantage of the symmetry property of v(o+ic), Eq.(18) can be reduced to following inversion 

formula: 

N 

8(r,z) = l- + Re c Y,,e-imrz’T+ 
?I=1 1 (19) 

Following Chu et al. [8], the parameter c in Eq.(19) has to be so chosen that (s-c)z does not 

exceed a specified value (usually 4 or 5). Expressions for the spectral coefficients ~0 and vn 

appearing in Eq.( 19) are tabulated in the Appendix. 

Results and Discussion 

Numerical values of dimensionless temperatures are obtained by evaluating Eq.(19), with Bi, 

Pe and 6 as input parameters. The infinite series in Eq.(19) is summed up to N terms such that a 

convergence criterion of 0.001% change in value of vn has been achieved, below which the 

summation series is truncated. Numerical computation of modified Bessel functions have been 

carried out by using the polynomial expressions [9] for both real and complex arguments. In this 

regard, it is informative to note that, the computation offir) and g(r) warrant special attention. 

Since the Bessel functions 10, Zr become infinite and Ks, 4 become vanishingly small at higher 

values of arguments, they need to be evaluated with exponential scaling. The polynomial 

coefficients, once the exponential factor is removed, do not pose any data overflowkndertlow 

problems. The temperature profiles are then plotted and depicted in graphical form. 

Temperature profiles near the quench front are illustrated in Fig.3 for different Peclet numbers 

with Bi=lO, where quench front temperature is found to increase with increase in Peck number. 

With fixed material properties and dimensions, Pe and Bi represent the quench front velocity and 
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the heat transfer coefficient respectively. For a specified Biot number, quench front temperatwe 

increases with increase in quench front velocity. This is because of the fact that a higher relative 

velocity between the tube and the coolant allows less time for sufficient heat transfer to take 

place, resulting in a higher value of 80. The above trend also reflects the fact that for the same 
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rewetting rate, an increasing tube thermal diffusivity tends to reduce 80. Temperature profiles for 

different Biot numbers with Pe=lO are shown in Fig.4, where quench front temperamre is found 

to decrease with increase in Bi. A higher Biot number results in a higher heat transfer coefficient, 

which may cause to decrease 00. Moreover, the temperature gradient at the quench front increases 

with increase in Pe in Fig.(3) and with increase in Bi in Fig.(4). This reveals the fact that axial 

conduction across the quench front becomes more significant at higher values of heat transfer 

coefficients and at higher quench front velocities. 

The dependence of quench front tempemture on radius ratio 6 is shown in Fig.(S), for fixed 

Biot and Peclet numbers. Here 00 is found to increase with decrease in radius ratio. The thickness 

of a tube increases with decrease in 6 and thereby its heat capacity also increases. Thus 80 is 

expected to increase with decrease in 6 owing to larger amount of initial heat content in a thicker 

tube. In the limiting case of a solid rod, where 6 is zero, quench front temperature assumes the 

maximum value. Finally the present solution has been compared with analytical solutions of [6] 

and a good agreement of data is observed in Fig.(6). Since number of terms N in the summation 

series (Eq.(l9)) increases with increase in Biot number, the accumulated round-off errors 

(attributed to computation of the integrals involved in the spectral coefficients) may effect the 

present solution. Nevertheless, the present model may be beneficial in predicting the temperature 

distribution for an entire physical domain, whereas the aforementioned analytical solution is 

limited to quench front location only. 

Conclusion 
F.. 

A semi-analytical solution for the conduction controlled rewetting of an intinite tube has been 

obtained, employing the Wiener-Hopf technique and its numerical Fourier inversion by lDFT 

algorithm. The temperature distribution in the tube are plotted for a wide range of input model 

parameters. In particular, the parametric dependence of quench front temperature on various 

model parameters are shown in graphical form. ln general, quench front temperature is found to 

increase with increase in Peclet number and with decrease in Biot number and radius ratio of the 

tube. It is felt that the present solution procedure, in principle, may be extended to more involved 

problems that in&de precursory cooling in the dry region or heat flux in the core in various 

other geometries. 
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Bi 
K(@=l+yfo. with y=JzF 

K+(ic)=ex~[~~ln(l+-&)dL2], with y =QEG7 

K+(is)=e{Frln(l+$$dD], with y =ssecn 

@) y’ =-an+t;c-s) 
K+(% + ic) K(a) - 1~~0WZW9 + 4W)W~~l 

- K (is) + 

Bi 
K@)=l+yf(y) 

K+(o,+ic)=exp(X-iy), 
Bi 

K(fanQ)=l+d(y), with y=&PG7 


