Gelatin Chitosan and Nano Bioactive Glass based Scaffold for Bone Tissue Engineering

Presented by

Dr. Sudip Dasgupta Assistant Professor

Department of Ceramic Engineering National Institute of Technology Rourkela, India

University of Dhaka

Content

- Introduction- Tissue Engineering
- Motivation
- Objective
- Methodology
- Results and Discussion
- Conclusions
- Acknowledgement.

Results and Discussion

- Fabrication and characterization of Gelatin-chitosan-HAp composite scaffold(GCH).
- Fabrication and characterization of Gelatin-chitosan-58S Bioglass composite scaffold(GCB).
- Fabrication and characterization of Gelatin-chitosan-β-TCP composite scaffold(GCT).
- Comparative study between GCH30, GCB30, GCT30 composite scaffold.

Introduction

In case of critical bone defects or patients suffering from osteopenia or osteoporosis tissue regeneration is required.

Canaliculus Osteocyte

(space)

Bone is a bio inorganic-organic composite

and

About 60 % of bone graft substitute- Ceramic alone or in combination Ceramic such as: Calcium Sulphate, Calcium Phosphate, Bioactive Glass University of Dhaka

Bone tissue Engineering using scaffolds

Objectives

i. To develop Gelain-Chitosan-Hydroxyapatite/ β -TCP/58S Bioglass based composite scaffolds with improved biological and mechanical properties.

ii. Systematic investigation on the **effects of compositional variation** on the microstructure, mechanical strength of different scaffolds.

iii. Study on **physico-chemical**, **mechanical** and **in-vitro biological** properties of the prepared composite scaffolds with variation in bioactive ceramic phase content.

iv. Comparative *in vitro* and *in vivo* analysis on biocompatibility and **osteogenic potentiality** of the developed composite scaffolds prepared using nano-phasic hydroxyapatite, β -Tricalcium phosphate and 58S bioglass as reinforcing particulate in gelatin, chitosan matrix.

Schematic presentation of the fabrication process of Gelatin/Chi-HAp composite scaffold

division of the pores caused by the sublimated ice crystals

polymer chain ice crystals 8

scaffold

University of Dhaka

Flow diagram of synthesized 58Sbioactive glass powder using sol-gel method

XRD pattern of 58SBioglass powder

- Phase analysis of the 58s nano-powder was performed using XRD.
- clearly indicate the amorphous nature of the synthesized bioglass powder.

FTIR spectrum of 58SBioglass powder

FESSEM micrograph of synthesized bioglass nanopowders

- Particle size of 50 nm was obtained from the FESEM mesurement.
- EDX analysis confirmed the presence of Si , Ca and P in synthesize 58s nanopowder.
- EDS analysis suggests that the synthesized powder with a composition of Si:Ca:P=36:21:7 closely resembled the theoretical composition.

TEM analysis of synthesized bioglass nanopowders

- particle size of 80 nm was obtained from the TEM analysis.
- EDX analysis confirmed the presence of Si, Ca and P in synthesize 58s nanopowder.
- SADE pattern confirmed the amorphous nature of synthesized 58s glass nanopowders.

University of Dhaka

Flow diagram of fabrication of GCB scaffolds using Freeze Drying Technique

Material composition of GCB scaffolds

Specimen name	Gel concentration (w/w)%	Chitosan Concentrat ion (w/w %)	CS-Gel/BG Ratio (w/w)%	
GCB-0	30	70	100/0	
GCB-10	30	60	90/10	
GCB-20	30	50	80/20	
GCB-30	30	40	70/30	

Schematic of Fabrication of the GCB scaffolds

- The characteristic diffraction peaks for both chitosan and gelatin were suppressed by the huge amorphous peak of bioglass observed in the range between 2θ equals to $20^{\circ}-40^{\circ}$.
- The broad amorphous peaks of bioglass confirmed that the synthesized scaffolds were predominantly amorphous.

FTIR study of GCB composite scaffold

FTIR Peak Assignment

Bonding Mechanism

Wavenumver (cm ⁻¹)	Assignment	$ \begin{array}{cccc} B \\ (A) & B \\ C \\$
1440	Ca+COO ⁻	PO_4
1076,540	Si-O-Si stretching and bending	$(B) \stackrel{B}{G} Ca^{+} \longrightarrow G Ca^{+} [-HO - Chi] \longrightarrow G Chi$
1022,653	PO ₄ -3	$(C) [GEL - NH_2^+] + [C_5H_8O_2] + [NH_2^+ - Chi] $ $(D) \begin{bmatrix} B \\ G \\ G \\ C_k \end{bmatrix} GEL = (C_1 - N) \begin{bmatrix} B \\ C_1 \\ C_2 \end{bmatrix} GEL = (C_1 - C_1) \begin{bmatrix} B \\ C_2 \\ C_1 \end{bmatrix} GEL = (C_1 - C_1) \begin{bmatrix} B \\ C_2 \\ C_2 \end{bmatrix} GEL = (C_1 - C_1) \begin{bmatrix} B \\ C_2 \\ C_2 \end{bmatrix} GEL = (C_1 - C_2) \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} GEL = (C_1 - C_2) \\ GEL = (C_1 - C_2) \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} GEL = (C_1 - C_2) \\ G$
1664-1640	Amide I	$\begin{bmatrix} GEL \longrightarrow N = HC - C_3H_6 - CH = N - Chi \end{bmatrix} \begin{bmatrix} GEL \longrightarrow C = N_6 \\ -Z_6 \\ -Z_7 \\ -Z_7$
3266	-OH	
9/4/2018		University of Dhaka B_{C} GEL $\blacksquare + C=N \blacksquare + Chi 14 \frac{B}{G}$

FESEM microstructure of fabricated GCB scaffold

Mercury porosimetry plot of fabricated GCB scaffold

Bioglass scaffolds specimens	Porosity (%)	Mechanical Properties		
		Compressive Strength* (MPa)		
BG 0%	89.3 ± 7.8	0.8 ± 0.16		
BG 10%	82.4 ± 5.0	1.2 ± 0.01		
BG 20%	80.8 ± 3.3	1.6 ± 0.01		
BG 30%	81.3 ± 6.1	2.2 ± 0.02		
*P<0.05, by student's t-test, n=5, all values in each mechanical property category were found to be				

significantly different from each other.

Cell attachment study on scaffolds

GCB30, 1d

GCB30,3d

GCB30,14d

- Extensive networks of polymerized β-tubulin and F-actin filaments as well as multiple cell–cell contacts indicates a higher degree of active cell spreading, movement, and signalling events with progress in cell university of Dhaka
- All the results revealed higher proliferation of MSCs on GCB 30 scaffolds after 14 days of cell culture.

Viability of pre-osteoblasts on GCB30 composite scaffolds measured by MTT assay

For all incubation periods, GCB 30 presented significantly higher (p = 0.026) cell viability than that on GCB 0 scaffold which suggests that addition of 58S bioglass nanoparticles in the scaffold promoted better cell adhesion and proliferation. University of Dhaka

Confocal study of RUNX2 and Osteocalcin expression in GCB scaffold

GCB30,1d

GCB30,7d

GCB30,14d

- an increase in the specific activity of RUNX2 with progress in cell culture time indicates a corresponding shift to a more differentiated state .
- Greater osteocalcin (Green) deposits were seen in scaffolds of 14 days cell culture indicating a higher amount of new bone formation with progress in cell culture time.

In summary

- we have successfully fabricated GCB nanocomposite scaffolds using Freeze drying method.
- The scaffolds were highly porous with total porosity of about 80% and average pore size in the scaffold fell to nearly 100 µm from 250 µm with increase in bioglass content from 10 wt% to 30 wt% in the gelatin –chitosan matrix.
- The bioglass particles (BG) were well distributed in gelatin-chitosan matrix, significantly improving the compressive strength. Thus, GCB 30 scaffold showed a compressive strength value comparative to that of natural cancellous bone.
- It was found that the swelling behaviour of the scaffolds was reduced on the increase in 58S-BG nanopowder content in the scaffold. Biodegradation test in PBS showed that the increase in 58S-BG content resisted the biodegradability of the scaffold.
- Preliminary results on cell culture using MSCs suggested that cells could adhere, spread, proliferate and differentiate very well onto GCB 30 scaffolds.
- MSCs were also found to transform into the new bone within 14 days of cell culture on the GCB 30 scaffold making them promising artificial bone grafts.

Comparative study between GCH, GCB & GCT composite scaffold

XRD pattern of composite scaffold (a) GCT30, (b) GCH30, (c) GCB30

FESEM micrograph of pore distribution in the cross-section of the composite scaffolds

Mechanical Property of composite scaffold

Osteoblast Adhesion

www.bioscience.org/2009/v14/af/3293/figures.htm

Integrin receptors bind ECM proteins via their extracellular domains, while their cytoplasmic domains are associated with a supramolecular plaque containing talin (Tal), vinculin (Vin), paxillin (Pax), focal adhesion kinase (FAK), etc.

9/4/2018

BSA Protein adsorption Study

Protein adsorption by Scaffold UV-visible of BSA adsorbed by composite scaffold

BSA protein standard curve

Amount of BSA uptakes by composite scaffolds are calculated as 45 mg/g, 42 mg/g ,38 mg/gm and 27 mg/g for GCB 30, GCT 30, GCH 30 and GC, respectively

In vitro Biodegradation study of composite scaffold

• Inclusion of Bioactive Ceramic particle decrease the degradation % in a significant manner.

26 wt% degradation was recorded for all composite scaffold after immersion in PBS solution up to 25 days.
 9/4/2018 University of Dhaka 29

Field Emission Scanning electron microscope (FESEM) images of human mesenchymal stem cells (hMSCs) grown on GC, GCH30, GCT30 and GCB30 scaffolds .

- The MSCs cultivated onto GCB30 showed higher number of lamellipodia and filopodia extensions to adhere to the scaffold surface after 7 days of culture.
- Compare to other scaffold, cells cultured in GCB30 scaffold stretched fully and cover the surface with lamallipodia extension , whereas in other scaffold cells were cling together

MTT assay of GCT composite scaffold

- The cell number increased with the culture time in all the group.
- Incorporation of bioactive calcium phosphate ceramic nanoparticle dramatically increase the cell proliferation in composite scaffold.
- GCB30 scaffold shows significant higher amount of cell proliferation compared to other scaffold. *P<0.05, by student's t-test, n=5, all values in category were found to be significantly different from each other.

In vtro Osteogenic Gene Expression Study

The expression of MSCspecific marker RUNX2 and osteocalcin by the MSCs cultured in the GC,GCH30,GCT30 and GCB30 for 14 days of culture.

In GCB30 scaffold cells express more markers osteocalcin indicating the that differentiation is higher in these scaffolds than in GC, GCH30 and GCT30 scaffold, which is in the line with the gene expression study University of Dhaka

In vivo study in rabbit model

Surgical Procedure

Sample Size

9/4/2018

X-Ray image of implant after 0,1,2,3 months of observation in rabbit

Radio density of material is decreasing with increasing time of implantation in all the scaffold (a) GC (b) GCH 30 (c) GCT 30 (d) GCB 30.

University of Dhaka

H E staining image of 1,2 and 3 month in (a) GC (b) GCH 30 (c) GCT 30 (d) GCB 30

- More cellular activity(Osteoblast & Osteoclast) has been seen in GCB 30 implant after three month study.
- Angiogenesis is visible in all the implant but more pronounce than control after three month of study.

Flurochrome labelling images taken after 1,2 and 3 months post-operatively implanted in OB NB (a) GC (b) GCH 30 (c) GCT 30 OB (d) GCB 30 OB (a) 1 month **a) 2 m** OB NB 80 ** OB Control(GC) GCH30 OB Old bone 70 GCT30 (b) 1 month (b) 2 month b) 3 month GCB30 60 -** Bone Growth (%) 50 -OB NB 40 -OB NB NB 30 OB 20 -(c) 2 month (c) 3 month 10 month 3 month 2 month NB NB Bone ingrowth in GC, GCH 30, GCT NB OB 30 and GCB 30 composite scaffolds OB OB after 1,2 and 3 months of implantation (d) 1 month 2 month d) 3 month

9/4/2018

University of Dhaka

ESEM image of host implant interface in (a) GC, (b) GCH 30, (c) GCT 30 and (d) GCB 30 scaffolds post operatively after 1 month

Conclusions

- Gelatin-chitosan based biopolymer matrix reinforced with nanoparticulate bioactive ceramic in the form of composite scaffold has been successfully prepared and characterized both *in vitro* and *in vivo*.
- The optimization of phase composition in the composite scaffold to obtain desired physiochemical mechanical and biological properties in the scaffold was performed with the help of different characterization techniques such as mercury porosimetry, mechanical strength, *in vitro* and *in vivo* bioactivity studies..
- 30wt% ceramic reinforced scaffold having composition HAp:Chi:gel (28:42:30) showed the maximum compressive strength of 3.26MPa while a lowest average compressive strength of 2.2MPa was recorded for bioglass based scaffold having composition gelatin:chi:bioglass equal to (30:40:30).
- In general with increasing bioactive ceramic phase content from 10-30 wt% bioactivity and mechanical property of all the scaffold(GCH,GCB,GCT) increased in a significant manner.
- Micro-CT analysis demonstrated the interconnected porous structure of all the scaffold with a highest of 73% interconnectivity shown by GCB30 scaffold.
- Among the GCH30, GCT30 and GCB 30 scaffold, the later showed the highest protein adsorption capacity of 45 mg/gm and lowest of 27 mg/gm exhibited by GCH 30 scaffold.
- Based on the histological, radiological and fluorochrome labelling results, 58s bioglass reinforced GCB30 composite scaffold showed enhanced early-stage bone formation at the defect site in rabbit tibia.

Future Scope

- Fabrication of freeze drying scaffold with varying Gelatin, Chitosan molecular weight and freeze drying parameters.
- Study on the effect of viscosity of slurry on pore morphologies and compressive strength.
- Future studies will focus on the ability to functionalize the surfaces of 58s bioglass/polymer composites with conjugate with other protein and study of their adsorption/release characteristics.
- To check the ability of composite scaffold in drug delivery system.
- Evaluate the bone growth phenomenon inside the implanted scaffold using Micro-CT technique.
- There is a lack of current understanding in the literature regarding the long-term in vitro and in vivo characterization of the porous 3D scaffold composites .

Publication

1. **Kanchan Maji**, Sudip Dasgupta "Hydroxyapatite-chitosan and gelatin based scaffold for bone tissue engineering", Transaction of Indian ceramic society, 2014;73:110-114.

2.**Kanchan Maji**, Sudip Dasgupta, Biswanath Kundu, Akalabya Bissoyi " Development of Gelatin-Chitosan-Hydroxyapatite Based Bioactive Bone Scaffold with Controlled Pore Size and Mechanical Strength-. Journal of Biomaterials Science, Polymer Edition, 2015;26(16):1190-1209.

3.**Kanchan Maji**, Sudip Dasgupta "Bioglass and biopolymer based composite scaffold for bone regeneration", Transaction of Indian ceramic society,2015: 74(4):1-7.

4.**Kanchan Maji**, Sudip Dasgupta, Krishna Pramanik, Akalabya Bishoyi, "Preparationand evaluation of novel chitosan-gelatin-nano-Bioglass 3D porous scaffold for Bone Tissue Engineering"-International Journal Of Biomaterials, 2016, 14.

5. Soumini Mondal, Sudip Dasgupta, **Kanchan Maji**"MgAl-layered double hydroxide nanoparticles for controlled release of salicylate" **Material science and enginerring C,** 68, 2016, 557–564.

6. **Kanchan Maji**, Sudip Dasgupta, Krishna Pramanik, Akalabya Bishoyi ," Development of Gelatin-Chitosan-β-TCP 3D porous scaffold for orthopaedic application" Journal of Material Science and Engineering C, Under Review.

6. **Kanchan Maji**, Sudip Dasgupta, Samit Nandy, Akalabya Bishoyi, "*In vitro* and *In vivo* Comparative study of Gelatin-Chitosan-Bioactive ceramic composite scaffold for orthopaedic application" Manuscript under preparation.

7.Sudip Dasgupta, **Kanchan Maji** "comparative study on mechanical strength of macroporous Hydroxyapatite-biopolymer based composite scaffold"- (International Conference on Advances in Engineering and Technology (ICAET'2014) March 29-30, 2014 Singapore).

8.Sudip Dasgupta, Debosmita Pani, **Kanchan Maji** "Reinforcement of Calcium Phosphate Cementwith E-Glass Fibre" International Science Index Vol:9, No:9, 2015 waset.org/Publication/10002520.

Acknowledgement

Ceramic Engineering (CR) All Faculty member and Technical stuff

Biotechnology and Medical Engineering (BM) Cell culture group

Department of Chemistry (CY)

Freeze Drying Facility

CSIR-central Glass and Ceramic Research Centre Bioceramic and coating division

Raja Raman Centre for Advanced Technology Computed Tomography facility

West Bengal University of animal and Veterinary Science In-vivo facility

Thank You

