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Abstract. In the modelling and analysis of turbine generator systems, bearing 

and coupling dynamic parameters are considered as the major unknowns. In the 

past, practitioners of rotor dynamics have modelled coupling as having speed 

independent stiffness and damping parameters that lead to modelling error, due 

to the fact that the amount of misalignment depends upon different modes of 

excitation. In this article, an identification algorithm has been developed for 

simultaneous estimation of the speed dependent bearing and coupling dynamic 

parameters along with residual unbalances. Lagrange’s equation is used to de-

rive the equations of motion of the system in generalized coordinates and least 

squares technique is used to develop identification algorithm. The novelty of 

the present identification algorithm is the estimation of speed dependent cou-

pling dynamic parameters along with speed dependent bearing dynamic param-

eters. Numerical experiments have been performed for a simple rotor train 

model to illustrate the developed algorithm. To check the robustness of the 

identification algorithm, measurement noise has been added in numerically 

simulated response. Well agreement in the estimated parameters is observed for 

a different level of measurement noise. 

Keywords: Speed Dependent, Bearing and Coupling Dynamic Parameters, La-

grange’s Equation, Identification Algorithm, Residual Unbalances. 

1 Introduction 

Unbalance is one of the major causes of failure of turbo–machineries because a small 

amount of unbalance can be the reason for excessive vibrations at high speed that may 

cause shattering of the rotor system [1]. It also diminishes the effectiveness of the 

entire rotor system. After unbalance the second most common fault is the misalign-

ment of shafts that causes unwanted moment and force at the critical locations in the 

rotor system i.e., coupling and bearings. Though misalignment of shafts at coupling 

and bearing is an eminent problem but still its identification is tough due to complexi-

ty in its modelling. Many researchers have developed algorithms for speed–

independent bearing and coupling parameters [8-12] as well as speed–dependent bear-

ing dynamic parameters [2, 13] but till now no work has been reported on the estima-

tion of speed–dependent coupling parameters. The amount of misalignment may re-
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flect in terms of stiffness and damping forces that depends upon the different modes 

of excitation and during motion the amount of misalignment would change with the 

operating speed. Hence, the coupling must be modelled as having speed dependent 

stiffness and damping parameters.  

[3] established an identification algorithm to evaluate the bearing dynamic parame-

ters and residual unbalance simultaneously for a multi–degrees–of–freedom system. 

[4] used impulse response measurements to develop an algorithm for estimation of 

residual unbalances and speed dependent bearing dynamic parameters simultaneously 

and acclaimed that the proposed methodology has flexibility to incorporate any num-

ber of bearings. [5] discussed various techniques to detect and quantify the faults in 

rotating machines. [6] developed a model–based fault diagnosis technique to identify 

the faults in a rotor–bearing–coupling system subjected to misalignment and unbal-

ance. Residual generation method is incorporated to estimate residual forces. [7] per-

formed an experimental investigation on four models of coupling and concluded that 

out of four models Nelson and Crandall’s second model that includes rotational 

damping and stiffness along with mass and inertia is found to be best to describe the 

dynamics of the coupling. [13] developed an identification algorithm to estimate the 

speed–dependent parameters like displacement stiffness and current stiffness and 

residual unbalances in a rotor system suspended on AMBs. Least square fit method in 

the frequency domain is used to estimate the parameters. SIMULINK is used to ob-

tain current and displacement response in time domain. Fast Fourier Transform (FFT) 

is used to convert time domain signal into frequency domain. 

In the present paper, an identification algorithm is established for simultaneous es-

timation residual unbalance and speed–dependent bearing and coupling parameters in 

the rotor bearing coupling system. Two sets of forced responses are generated alterna-

tively by considering and without considering trial mass and responses are incorpo-

rated in the development of an algorithm to find the estimates for different speeds. 

The effect of noisy response on the estimated parameters is discussed and the algo-

rithm is found to be excellent.  

2 System Configuration 

A simple model of turbo–generator system comprises of two rigid rotors each having 

a rigid disc at mid–span of mass, 𝑚𝑖
𝑑(where i = 1, 2) and diametral mass moment of 

inertia, 𝐼𝑖
𝑑 (where i = 1, 2) along with two residual unbalances (F

res
=𝑚𝑖

𝑑e, magnitude 

of unbalance in each rotor, where e is the eccentricity of the rotor) is taken as shown 

in Fig. 1. Flexible coupling used to connect the rotors is modelled as having KcL, the 

linear stiffness, and KcT, the rotational stiffness. Each shaft is mounted on bearings 

having damping coefficient, C, and stiffness coefficient, K, as the properties. The 

diagram of the rotor–bearing–coupling model in deflected position in (x–z) plane is 

shown in Fig. 2 (a), in which X and Φy represents the linear and angular displace-

ments respectively, and the schematic diagram of the coupling is shown in Fig. 2 (b). 



3 

2.1 Equation of Motion 

For simplicity, a rotor model representing single–plane motion is taken under consid-

eration and four generalized coordinates are used to define the motion of the turbo–

generator system. Relationships among the displacements at various axial locations of 

the rotor in (z–x) plane in terms of generalized coordinates are 

 

1 1 1 1 2 2 2 2

1 1 2 2

p c y q c y r c y s c y

1 c y 2 c y

X = X +1.25l Φ X = X +0.25l Φ , X = X +0.25l Φ , X = X +1.25l Φ ,

X = X +0.75l Φ , X = X +0.75l Φ

, 

  
   

(1) 

where 1.25l is the length of each shaft. Kinetic energy (KE) of the system and virtual work 

(δW) due to non-conservative forces can be obtained as, 

                    
1 1 2 2

2 2 2 2

1 1 2 2

1 1 1 1

2 2 2 2
= d y d ym X I m X IKE    

                                  
(2) 

1 2 1 2

1 2 1 2

1 2

1 2 3 4

1 2 3 4

( ) ( )

 ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

p p q q r r s s cL c c c c

cT y y y y p p q q r r s s

1 c y 2 c y

δW = K X X K X X K X X K X X K X X X X

       K C X X C X X C X X C X X

        f t δ X +.75l + f t X +.75l

    

        

  

     

      


  

(3) 

 

Fig. 1. Rotor–bearing–coupling system 
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Fig. 2. (a) Diagram of deflected rotor in z–x plane (b) Coupling model 

Lagrange’s equation can be expressed as 

                                                 
( )

jj

d KE W

dt QQ

 
 

 
 

 


                                                   

(4) 

where Qj represents the generalized coordinates (
1cX , 

2cX , 
1y and

2y ). 

The equations of motion for the turbo–generator system can be written as  

 

                                        M C K F t    
                                     

(5) 

Where [M], [C] and [K] are the mass, damping and stiffness matrices respectively. 

The force and displacement expressions used in the equation of motion are having 

forms {F(t)}={f}ejωt and {η(t)}={η(t)}ejωt respectively. Where vectors {f} and {η} 

comprises of magnitude and phase information. Substituting the above expressions of 

force and displacements in Eq. (5), it can be written as  

                                                 2K j C M f    
                                    

(6) 

with 
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Responses in complex forms can be appraised from Eq. (6) with the help of the as-

sumed values of dynamic parameters of the bearing-coupling system and the unbal-

ances. 
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2.2 Development of Identification Algorithm 

Eq. (6) can be written in the form of regression equation in which all the unknown 

quantities i.e. the coupling and bearing dynamic parameters and residual unbalances 

are kept in a vector placed on the left–hand side and all the known quantities are kept 

in right–hand side vector. The regression equation for a spin speed can be written as 

 

                                                
14×1 8×18×14

   A X B    
                                  

(7) 

with 

              1 2 3 4 1 2 3 4 1 1 21 1 24×

T
res res res res

cL cT r i r iK ,K ,K ,K ,K ,K ,C ,C ,C ,C ,F ,F ,F ,FX   

where subscript represents matrix or vector size. From Eq. (7) it can be seen that the 

number of equations is less than that of the number of unknown variables. So this is a 

case of undetermined system of linear simultaneous equations. In order to estimate the 

parameters, another set of response is required that can be generated with the help of 

trial mass. For trial unbalance, the equations of motion and force vector can be repre-

sented as   

 

                                                            2

t tK j C M f    
                                

(8) 

with 
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 
 

 

 

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where U1 represents the trial unbalance (U1= mtet is the trial unbalance with trial mass 

mt and eccentricity et) attached to the first disc in the turbo–generator system. Both 

the sets of responses from Eq. (6) and Eq. (8) will be used in the formation of the 

determined regression equation for one spin speed, and this procedure will be imple-

mented for several spin speeds in order to find the unbalances along with speed de-

pendent dynamic parameters. 

The determined system of regression equation by using least square fit technique 

for one spin speed can be presented as 

 

                                  
 

 
  

 

 14×1

16×14 16×1

 
1 1

2 2

A B
X

A B

    
   

      

 


 
                             

(9) 
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From Eq. (9) it can be seen that the total number of equations (i.e., 16) is greater 

than the number of unknown parameters (i.e., 14), this represents the system of equa-

tions is determinate. Now, the regression equation is extended to estimate speed de-

pendent dynamic parameters. In this article, for brevity, the algorithm is developed to 

accommodate dynamic parameters at three different speeds and could be expressed as 

 

                              

 

 

 

 

 

 

  

 

 

 

 

 

 

34×1

48×34 48×1

1 1 1 1

2 1 2 1

1 2 1 2

2 2 2 2

1 3 1 3

2 3 2 3

A B

A B

A B
XX

A B

A B

A B

 

 

 


 

 

 

   
   
   
   

   
   
   
   
      

                           
(10) 

Eq. (10), can be written as 

 

                                       
34×1 48×148×34

   AA XX BB       

with      

 

                                           AA   RQ                                                   
(11) 

 

 
1
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3

( ) 0 0

0 ( ) 0

0 0 ( )

q

Q q

q

 
 


 
  



 



;     
1

2

3

( )

( )

( )

r

R r

r

 
 


 
  


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

;   

1
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3
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( )  ( )
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X
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X



 



 
 


 
  

;

 

In Eq. (11), the matrix Q(ω) contains displacement contributions from the speed de-

pendent bearing and coupling dynamic parameters. Vector R(ω) having the coeffi-

cient contributions due to residual unbalances. Vector B(ω) contains known infor-

mation such as masses (disc mass and trial mass). ω1, ω2 and ω3 are three different 

spin speeds of rotor. With mathematical rearrangements Eq. (10) can be converted 

into the least squares form to estimate unknown parameters as  

 

             -1

34×48 34×48 48×134×1 48×34
 ([ ] ) [ ] { ( ) }T TXX AA AA AA BB ω            

(12) 
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Fig. 3.Flow chart for identification algorithm 
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3 Results and Discussion 

Numerical experiment is performed for the turbo–generator system shown in Fig. 1. 

The flow chart of the algorithm is presented in Error! Reference source not found.. 

The model parameters used to generate response of the system are: rigid rotors each 

of length 1.25 m, mass of 0.612 kg and diametral mass moment of inertia of 0.051 

kgm
2
: two rigid discs of masses 2 kg and 5 kg, and diametral mass moment of inertia, 

0.005 kgm
2
 and 0.014 kgm

2
, respectively. The assumed and estimated coupling and 

bearing dynamic parameters for three different spin speeds (i.e., 20Hz, 30Hz and 

40Hz) are summarized in Table 1, Table 2 and Table 3, respectively. The effective-

ness of the identification algorithm is checked for various levels of measurement 

noise (up to 5%) fed to the simulated response. The speed dependent estimated pa-

rameters for three different speeds are shown in Fig. 4, Fig. 5 and Fig. 6. From Fig. 4–

Fig. 6, it can be concluded that most of the parameters are in well agreement with 

assumed values except some of the damping parameters. The maximum percentage 

deviation occurred for 20 Hz, 30 Hz and 40 Hz are around 24%, 22% and 22%, re-

spectively for 5% measurement noise condition. It can be noticed that for all the three 

spin speeds maximum percentage deviation of the estimated parameter is found for 

same bearing damping parameter.  

 

Table 1.Comparison of assumed and estimated parameters for 20 Hz 

Parameters Assumed 

value 

Estimated Parameters (% deviation) 

Without noise With 1% noise With 5% noise 

K1 (kN/m) 25 24.99 (0.04) 24.94 (0.24) 24.75 (1.00) 

K2 (kN/m) 20 20.00 (0.04) 20.13 (0.65) 20.62 (3.10) 

K3 (kN/m) 15 14.99 (0.07) 14.44 (3.73) 12.41 (17.27) 

K4 (kN/m) 25 24.98 (0.08) 24.23 (3.08) 21.51 (13.96) 

KcL (kN/m) 10 9.99 (0.1) 9.93 (0.70) 9.65 (3.50) 

KcT (kNm/rad) 15 15.00 (0.04) 15.24 (1.60) 15.92 (6.13) 

C1 (Ns/m) 200 199.9 6(0.02) 200.16 (0.08) 200.77 (0.39) 

C2 (Ns/m) 150 150.09 (0.06) 149.78 (0.15) 148.91 (0.73) 

C3 (Ns/m) 140 139.92 (0.06) 132.37 (5.45) 106.69 (23.79) 

C4 (Ns/m) 250 249.96 (0.02) 239.85 (4.06) 204.50 (18.20) 

1

resF (kg×mm) 5.86 5.85 (0.17) 5.86 (0.00) 5.86 (0.03) 

2

resF  (kg×mm) 7.47  7.46 (0.13) 7.32 (2.01) 6.78 (9.24) 
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Table 2.Comparisonof assumed and estimated parameters for 30 Hz 

Parameters Assumed 

value 

Estimated Parameters (% deviation) 

Without noise With 1% noise With 5% noise 

K1 (kN/m) 25.50 25.49 (0.04) 25.45 (0.19) 25.30 (0.78) 

K2 (kN/m) 20.60 20.60 (0.05) 20.74 (0.68) 21.26 (3.20) 

K3 (kN/m) 15.55 15.55 (0.01) 15.01 (3.47) 13.05 (16.08) 

K4 (kN/m) 25.65 25.64 (0.04) 24.90 (2.92) 22.23 (13.33) 

KcL (kN/m) 10.53 10.53 (0.05) 10.43 (0.95) 10.06 (4.46) 

KcT (kNm/rad) 15.62 15.64 (0.13) 15.75 (0.83) 16.10 (3.07) 

C1 (Ns/m) 230 229.92 (0.04) 230.11 (0.05) 230.43 (0.19) 

C2 (Ns/m) 185 185.13 (0.07) 184.86 (0.07) 184.42 (0.31) 

C3 (Ns/m) 175 175.85 (0.49) 166.14 (5.06) 137.12 (21.65) 

C4 (Ns/m) 285 286.04 (0.36) 273.36 (4.08) 234.26 (17.80) 

1

resF (kg×mm) 5.86 5.85 (0.17) 5.86 (0.00) 5.86 (0.03) 

2

resF  (kg×mm) 7.47 7.46 (0.13) 7.32 (2.01) 6.78 (9.24) 

Table 3.Comparisonof assumed and estimated parameters for 40 Hz 

Parameters Assumed value Estimated Parameters ( % deviation) 

Without noise With 1% noise With 5% noise 

K1 (kN/m) 25.90 25.89 (0.04) 25.85 (0.19) 25.74 (0.62) 

K2 (kN/m) 20.80 20.81 (0.05) 20.95 (0.72) 21.52 (3.46) 

K3 (kN/m) 15.85 15.85 (0.04) 15.38 (2.96) 13.63 (14.01) 

K4 (kN/m) 25.95 25.95 (0.02) 25.27 (2.62) 22.80 (12.14) 

KcL (kN/m) 10.83 10.83 (0.01) 10.71 (1.02) 10.24 (5.45) 

KcT (kNm/rad) 15.92 15.92 (0.03) 15.97 (0.31) 15.91 (0.06) 

C1 (Ns/m) 260 259.96 (0.02) 260.03 (0.01) 260.14 (0.05) 

C2 (Ns/m) 205 205.07 (0.03) 204.97 (0.02) 204.88 (0.06) 

C3 (Ns/m) 195 195.25 (0.13) 186.03 (4.60) 152.59 (21.75) 

C4 (Ns/m) 300 300.26 (0.09) 288.20 (3.93) 244.12 (18.63) 

1

resF (kg×mm) 5.86 5.85 (0.17) 5.86 (0.00) 5.86 (0.03) 

2

resF  (kg×mm) 7.47 7.46 (0.13) 7.32 (2.01) 6.78 (9.24) 
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Table 4.Evaluatedresidual unbalances for different disc masses for 5% measurement noise 

S.N. Assumed  mass of disc(kg) Estimated  residual  unbalance (kg-m @ deg ) 

  Assumed unbalance 

(disc 1) 

0.00586 @ 36.0 

Assumed unbalance 

 (disc 2) 

0.00747 @ 144.0 

Set-1 m1=2.0, m2=5.0 0.00558 @ 30.00 0.00735 @ 150.00 

Set-2 m1=1.5, m2=3.0 0.00585 @ 30.02 0.00730 @ 150.27 

Set-3 m1=2.0, m2=1.5 0.00585 @ 29.92 0.00731 @ 150.25 

 

 

Fig. 4. Error plot for 20 Hz 

 

Fig. 5. Error plot for 30 Hz 
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Fig. 6. Error plot for 40 Hz 

The effect of modelling error (percentage deviation in the estimated parameters due to 

variation in disc masses) in the estimation of unbalance parameters (magnitude and 

phase) for 5% measurement noise case is given in Table 4. From Table 4, it can be 

seen that the magnitude of residual unbalance is representing well agreement with 

assumed values for all the three sets of disc masses. Also, slight variation in the esti-

mated phase can be observed. But fair repeatability of the estimated parameters (mag-

nitude and phase) can be observed for all the three sets. Hence it concluded that the 

estimated unbalance parameters show well agreement with assumed values in terms 

of magnitude whereas small deviation could be observed in phase estimation. 

4 Conclusions 

An identification algorithm is developed to estimate speed–dependent bearing and 

coupling parameters and the unbalances, simultaneously. The speed dependency of 

the parameters is checked for three different spin speeds and corresponding parame-

ters are estimated that shows well agreement with each other. The effectiveness of 

identification algorithm is verified against measurement errors and modelling errors 

and found to be excellent. In future it will be interesting to see how these speed–

dependent parameters behave while performing two-plane analysis with more num-

bers of unknown parameters. 
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