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Abstract—Spectrum sensing is one of the fundamental ob-
jective of cognitive radio network (CRN). In last one-decade
the eigenvalue-based blind spectrum sensing methods have been
extensively studied for CR applications. Eigenvalue-based tech-
niques require large data sample for accurate detection of the
signal under the low Signal-to-Noise ratio. This results in delayed
sensing under large data sample. Thus, the recent trend is to
explore the eigenvalue-detection methods under the low sample
environment.In this paper we propose a Corrected John’s Test
(CJT) based eigenvalue technique for spectrum sensing. Asymp-
tomatic test statistic and Probability of false alarm are obtained
for the same. Performance analysis of CJT detector is compared
with the previously proposed techniques like, Scaled Largest
Eigenvalue (SLE), Maximum-Minimum Eigenvalue (MME), and
Arithmetic to Geometric Mean (AGM) for relatively less number
of samples. The simulation results show supremacy of CJT under
Nakagami fading environment, for very less number of samples.

Index terms— Cognitive Radio, Spectrum Sensing, eigen-
value, low sample environment, Nakagami fading

I. INTRODUCTION

The rapid increment in the wireless devices has expanded
the interest for high information rate and better multi-media
applications. So, this has led to the spectrum scarcity problem.
The Cognitive Radio network is proposed to make use of the
spectrum efficiently by exploiting the under-used frequency
bands by dynamic spectrum access[1, 2]. It consists of four
main functions, Sensing, Sharing, Mobility and Management
[2–4]. Out of them, the most fundamental and key function
is the Spectrum Sensing. Spectrum Sensing is the process
of detecting the presence or absence of Primary User (PU).
The cognitive radio system will give access to the Secondary
User (SU) in the case of PU’s absence and quickly vacate
as the PU reappears. There are several spectrum sensing
methods like, Energy detection [4, 5], matched filter detection,
cyclostationary detection [6] and recently Eigenvalue [7–9]
based detection to detect the presence of PU signal [10].

The conventional energy detector [4, 5, 11] is simple and
computationally less complex; however, the threshold depends
on the noise variance and performance is poor under low
Signal-to-Noise ratio (SNR) [4]. In practical case, obtaining
accurate noise variance is not possible, hence fully-blind
spectrum sensing schemes like eigenvalue detector are more
robust. Eigenvalue detectors do not relay upon noise power
and perform superior than energy detector under low SNR

conditions [12]. Several eigenvalue methods like Maximum-
Minimum Eigenvalue (MME) [9], Energy-Minimum Eigen-
value [9] (EME), Arithmetic to Geometric mean [13] (AGM),
Eigenvalue-Moment-Ratio [13] (EMR) and Scaled Largest
Eigenvalue [8] (SLE) uses different test statistics depending
on the eigenvalues of the covariance matrix. The thresholds
of SLE and MME detectors are obtained in the regime where
p, n → ∞ and hence they perform better under more number
of samples (n) and sensors (p) scenario [9, 14]. The asymptotic
threshold of EMR is also derived under p, n → ∞ regime,
but detection performance is better than SLE & MME for
less number of samples. For more samples case, it has been
known that the SLE surpasses all the detectors, because of
it’s agile increase in the probability of detection. This agitated
behavior of these detectors, based on a number of samples, is
due to the regime under which their thresholds are obtained.
In other words, there will be a small error in performance for
the above mentioned tests, under the finite number of samples
and sensors [13]. So this paper proposes the Corrected John’s
Test (CJT) based spectrum sensing technique for low sample
scenario under the classical regime, p fixed and n → ∞.

The potential of a detector is known when it’s ability to
detect under low sample scenario is great. Also, due to some
hardware preferences, the CRN ought not rely upon additional
number of sensors to give better performance. These two
reasons state that the detector implemented at CRN should
give better performance under less and fixed sensors and low
samples environment. Consequently, the classical regime is
highly preferred for CRN applications. Corrected John’s Test
(CJT) is such a detector which outperforms SLE, MME, and
AGM under the classical regime and for very low sample
environment. The asymptotic expressions for probability of
false alarm (Pfa) and threshold are derived for CJT. And
furthermore, the numerical and theoretical results are validated
using MATLAB simulations. Comparative analysis of CJT
with previous proposed eigenvalue based sensing techniques
is done in terms of probability of detection (Pd )vs SNR, for
no fading and severe Nakagami-fading channel.

The rest of the paper is as per the following: section
II describes the system model, which describes the binary
hypothesis detection of the PU and some conventional
test statistics. Section III presents the proposed analytical
expressions of probability of false alarm and asymptotic



threshold. The simulation results are presented in section
IV which shows the performance of CJT compared to SLE,
MME and AGM under Nakagami fading environment.Finally,
the section V discusses the conclusion and further research
that could be carried on.

II. SYSTEM MODEL

A. Hypothesis Test

The signal detection can be done by testing the signal’s par-
ticular characteristic i.e., energy or eigenvalue etc., with some
threshold level. Two hypothesis, H0 and H1 are considered
to characterize the presence or absence of PU. i.e., when the
signal is not present it is considered as H0 hypothesis and
when the signal is existing it is H1 hypothesis [10].

H0 : x[i] = w[i] (1)
H1 : x[i] = Hs[i] + w[i] (2)

Where i = 1, .., n is the particular sample at ith moment.
As shown in Fig.1, a single PU transmits the signal and p
number of sensors are used at the secondary receiver system
to receive it by sensing the particular frequency band for a
specific amount of time, collecting n samples [8].

Fig. 1. System Model of CR

Let xp×n[i] = [x1(i)...xp(i)]
T , is a matrix comprising of

all the n samples gathered by each p sensor at ith instant.
s1×n[i] = [s(1)...s(n)] is the transmitted signal represented as
data matrix, hp×1 is the envelope of fading channel, which uni-
formly influences all the samples at an individual sensor inde-
pendently. wp×n[i] = [w1(i)...wp(i)]

T is the received complex
Gaussian noise, with zero mean and variance σ2, additively
affecting each sample. Let X = [x(0), x(1), ..x(i), ..x(n)] be
the matrix which denotes the full data received through out
the sensing time, then the sample covariance matrix of the
received signal is defined as Rxp×p

Δ
= 1

NXXH [15, 16]. Let T
be a test statistic and t be the decision threshold with which
it is compared. Then probability of false alarm is defined as,

Pfa = Pr(T > t|H0) (3)

And the probability of detection is defined as

Pd = Pr(T > t|H1) (4)

The decision threshold should not depend on the noise vari-
ance, since the noise level is not certain [4]. The optimum
threshold level should be chosen with the end goal of low
false alarm rate (≤ 0.1 tolerable level, as per IEEE 802.22
standards for WRAN) and high detection rate. So to obtain a
constant false alarm rate (CFAR) the threshold level should be
fixed to a level by assuming Pfa is 0.1.

B. Corrected John’s Test (CJT) detection Method

Consider the received signal, Xp×n , from a p-dimensional
multivariate distribution with population covariance matrix
Σp. A significant task in multivariate analysis is to check
sphericity of the test [17]. Under H0 hypothesis, where only
i.i.d normal distribution samples with zero mean and Σp will
occur, the eigenvalues of p× p sample covariance matrix can
be represented as {li}1≤i≤p.

i. John’s Test: The acclaimed John’s Test is defined as[18],

T2 = (
np

2
)
p−1

�p
i=1(li − l̄)2

(l̄)2
(5)

where l being equal to,

l =
1

n

p�

i=1

(li)

It can be observed that the John’s Test T2 proportional to
the ratio of square of variation from sample eigenvalues
to the square of mean of sample eigenvalues. Under H0

hypothesis, the T2 test statistic follows a Chi-Squared
distribution, χ2

f with f = 1
2p(p + 1) − 1 degrees of

freedom.
The distribution function of the statistic T2 was obtained
using the Box-Bartlett correction [17],

P (T2 ≤ tjt) = Pf (tjt) +
1

n
{apPf+6(tjt) + bpPf+4(tjt)+

(6)

cpPf+2(tjt) + dpPf (tjt)}+O(n−2)
(7)

where, tjt is threshold for John’s test and O(n−2) is the
convergence factor and

Pk(tjt) = P (χ2
k ≤ tjt)

ap =
1

12
(p3 + 3p2 − 12− 200p−1)

bp =
1

8
(−2p3 − 5p2 + 7p− 12− 420p−1)



cp =
1

4
(p3 + 2p2 − p− 2− 216p−1)

dp =
1

24
(−2p3 − 3p2 + p+ 436p−1)

ii. Corrected John’s Test (CJT):
Corrected John’s Test (CJT) is the modified version of
John’s Test, which has been proposed by Q. Wang et al.
in [17].

U = 2(np)−1T2 (8)

under classical scenario, p fixed and n → ∞, U follows
Chi-Squared distribution, which is represented in the form
nU − p.

nU − p ⇒ 2

p
χ2
f − p (9)

C. Some other Conventional Detectors

i. Scaled Largest Eigenvalue (SLE): The test statistic of
SLE is defined as [8],

TSLE =
l1

1
p

�P
i=1 li

(10)

The TSLE has a Tracy-Widom distribution under H0

hypothesis, when scaled and centralized by µnp and
σnp[19]. The threshold is formulated as a function of
Tracy-Widom distribution, and is represented as [13, 14]

tSLE = (1 +

�
p+ 1/2

n+ 1/2
)2+

(
�
p+ 1/2 +

�
n+ 1/2)4/3

n[(p+ 1/2)(n+ 1/2)]1/6
F−1
2 (1− �) (11)

Where F−1
2 is the Tracy-Widom distribution of order β

=2

ii. Arithmetic to Geometric Mean (AGM): The test statis-
tic of AGM is defined as [13],

TAGM = 2(n− 1)log

�
1
p

�p
i=1 li

(
�p

i=1 li)
1/p

�P

(12)

The threshold expression for AGM [13] is represented as,

tAGM =
2

c1
Γ̄−1(1− �, p2 − 1) (13)

iii. Maximum-Minimum Eigenvalue (MME): The test
statistic of MME is defined as [9],

TMME =
l1
lm

(14)

According to the theorem by I. M. Johnstone, the covari-
ance matrix of received signal under H0 hypothesis has
to be centered and scaled to make it follow the Tracy-
Widom distribution[9]. So the RX is to be formed in
the form of lmax(AMME)−µ

ν , where the matrix AMME =
N
σ2
n
∗RX

And the threshold is given by [9],

tMME =
(
�

n+ 1/2 +
�

p+ 1/2)2

(
�

n+ 1/2−
�

p+ 1/2)2

(1 +
(
�

n+ 1/2 +
�

p+ 1/2)−2/3

[(p+ 1/2)(n+ 1/2)]1/6
F−1
2 (1− �)) (15)

III. PROBABILITY OF FALSE ALARM AND ASYMPTOTIC
THRESHOLD FOR CJT

A. Probability of False Alarm

Making use of the distribution function of John’s test [17],
the Pfa expression for CJT can be obtained as,

Pfa = P (nU − p > tCJT |H0) (16)

= 1− P (nU − p ≤ tCJT |H0)

= 1−[P (
2

p
χ2
f−p ≤ tCJT )+

1

n
{apP (

2

p
χ2
f+6−p ≤ tCJT )+

bpP (
2

p
χ2
f+4 − p ≤ tCJT ) + cpP (

2

p
χ2
f+2 − p ≤ tCJT )+

dpP (
2

p
χ2
f − p ≤ tCJT )}] (17)

= 1− [P (χ2
f ≤ (tCJT + p)p

2
)+

1

n
{apP (χ2

f+6 ≤ (tCJT + p)p

2
)+bpP (χ2

f+4 ≤ (tCJT + p)p

2
)+

cpP (χ2
f+2 ≤ (tCJT + p)p

2
) + dpP (χ2

f ≤ (tCJT + p)p

2
)}]

(18)

= 1− [
γ( f2 ,

(tCJT+p)p
4 )

Γ( f2 )
+

1

n
{ap

γ( f+6
2 , (tCJT+p)p

4 )

Γ( f+6
2 )

+

bp
γ( f+4

2 , (tCJT+p)p
4 )

Γ( f+4
2 )

+cp
γ( f+2

2 , (tCJT+p)p
4 )

Γ( f+2
2 )

+dp
γ( f2 ,

(tCJT+p)p
4 )

Γ( f2 )
}]

(19)

= 1− [F f
2
(
(tCJT + p)p

4
) +

1

n
{apF f+6

2
(
(tCJT + p)p

4
)+

bpF f+4
2
(
(tCJT + p)p

4
) + cpF f+2

2
(
(tCJT + p)p

4
)+

dpF f
2
(
(tCJT + p)p

4
)}] (20)

where, γ( f2 ,
(tCJT+p)p

4 ) is the lower incomplete gamma
function, Γ( f2 ) is the gamma function and F f

2
( (tCJT+p)p

4 )
is the CDF of Chi-Squared distribution, considering the left
tail region, with f degrees of freedom and tCJT being the
threshold of CJT test statistic.



B. Asymptotic Theoretical Threshold

From the Eq. 20, it can be seen that there are five chi-
squared distribution functions with different degrees of free-
dom which makes it difficult to obtain the threshold value.
It can be observed that the ap, bp, cp, dp terms can be ne-
glected when multiplied by it’s CDF. Following, an asymptotic
threshold expression has been proposed. The approximated
probability of false alarm expression can be obtained as,

Pfa = F f
2
(
(tCJT + p)p

4
) (21)

F−1
f
2

(Pfa) =
(tCJT + p)p

4

Taking inverse, the asymptotic threshold is represented as,

tCJT ≈ 4

p
F−1

f
2

(Pfa)− p (22)

where, tCJT is the asymptotic threshold for statistic nU − p
and F−1

f
2

(Pfa) denotes the inverse of chi-square CDF, consid-
ering the right-tail region, with f degrees of freedom.

IV. SIMULATION RESULTS AND ANALYSIS

The detection performance of CJT can be observed by
implementing a MATLAB based simulation. It has been also
compared with SLE, AGM and MME to inspect it’s dominance
under low sample and fading environment. The distribution
of CJT under H1 hypothesis has not been proposed in [17].
Henceforth to avoid any disruption in performance, the signal
is considered to be normal distributed. The detection of CJT
has been analyzed under severe Nakagami fading environment
(m=0.5)[20, 21], and also considering very less number of
samples and sensors (n=12, p=3). Severe Nakagami fading
has been taken to analyze the worst case performance of CJT
detector. The monte carlo simulation has been implemented
for 106 number of iterations.

The accuracy of proposed theoretical threshold expression
can be observed by comparing it with the simulated threshold.
Fig. 2 indicates two different combinations of sensors and
samples scene. For low sample case, n = 12 and p = 3,
it depicts a very minute difference between the proposed and
simulated thresholds under target false alarm value Pfa = 0.1.
However, as the value of Pfa increases, both are exactly the
same. For relatively more number of samples and sensors
case, i.e., n = 24 and p = 8, it has been seen that the
difference between simulated and theoretical curves remain
almost negligible. The main conclusion is that, the proposed
asymptotic threshold respects the classical regime, i.e., it has
been observed by the authors that, even by keeping the number
of sensors fixed, the accuracy of proposed threshold expression
increases as n → ∞.

The receiver operating characteristics of CJT under no
fading and severe Nakagami fading channel is demonstrated
in Fig. 3 . There is almost 5-10 % difference in the probability
detection with respect to no fading. Likewise, Fig. 4 shows the
plot of Pd vs SNR for CJT in comparison to the traditional

eigenvalue methods, under sample starving environment. It
can been observed that, there is almost ten percentage of
improvement in the probability of detection for zero to five
dB SNR.

The receiver operating characteristics (ROC) of CJT in
Fig. 5 shows that under target false alarm Pfa = 0.1, the
detection performance of CJT dominates over the SLE, MME
and AGM even under very less number of samples and
also in the presence of Nakagami fading effect. Thus, our
simulation results shows the superiority of CJT over other
existing techniques in terms of probability detection.
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Fig. 3. Comparison of CJT performance under no fading channel and
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V. CONCLUSION

Corrected John’s Test (CJT) is a detector which can perform
better under low samples environment. The CJT’s performance
is analyzed under the presence of severe Nakagami fading
case, and it can be seen that CJT dominates all traditional
eigenvalue detectors. However, as the number of samples
increases, SLE surpasses CJT. The EMR test’s performance
dominates the CJT’s even for less samples. In any case,
EMR’s regime of convergence is different from that of CJT’s.
Furthermore, the proposed threshold expression has been ap-
proximated by neglecting the smaller terms. Therefore, further
statistical analysis is required so that Eq. 20 can be solved
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for better threshold value and in turn the accuracy may also
improve. In future, CJT would be also tested for multiple
primary users transmission.
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