
An Incremental Approach for Collaborative
Filtering in Streaming Scenarios

Rama Syamala Sreepada and Bidyut Kr. Patra

Department of Computer Science and Engineering, National Institute of Technology
Rourkela, Rourkela, Odisha, India – 769008.

{515cs1002, patrabk}@nitrkl.ac.in

Abstract. The crux of a recommendation engine is to process users rat-
ings and provide personalized suggestions to the user. However, process-
ing the ratings and providing recommendations in real time still remains
challenging, when there is a perpetual influx of new ratings. Traditional
approaches fail to accommodate the new streamlined ratings and update
the users’ preferences on the fly. In this paper, we address this challenge of
streaming data without compromising accuracy and efficiency of recom-
mender system. We identify the affected users and incrementally update
their vital statistics after each new rating. We propose an incremental
similarity measure for finding neighbors who play an important role in
personalizing recommendations for active user. Experimental results on
real-world datasets show that the proposed approach outperforms the
state-of-the-art techniques in terms of accuracy and execution time.
Keywords. Collaborative filtering, Personalized recommendation, Stream-
lined ratings, Tendency based approach, Incremental updates.

1 Introduction

Collaborative filtering (CF) techniques have been very successful and popular
in providing recommendations to the users. CF techniques are broadly catego-
rized into two types: Neighborhood based approach (User based CF and Item
based CF) and Model based approach. The user-based (UB) and item-based
(IB) CF approaches are one of the earliest methods in recommender systems
[1]. On the other hand, model based CF techniques are proven to be more ac-
curate in learning the user’s and item’s features through building a model using
machine learning and other techniques [4]. In [3], Cacheda et al. proposed a
tendency-based technique to further improve the recommendation accuracy and
computational cost.

The traditional techniques are not equipped to process the incremental rat-
ings in real time. As the new ratings arrive, the users’ taste/ interests can change
w.r.t. time i.e. the users’ preferences calculated earlier could become obsolete,
leading to a concept drift in the recommender system. A feasible solution is
to incrementally update the preferences with the arrival of each new rating.
In this direction, Huang et al. proposed an item-neighborhood based approach
which prunes the probable dissimilar items to reduce the number of similarity

computations [2]. Subbian et al. proposed a probabilistic neighborhood based
approach to compute the similarity between the items [5]. This approach ap-
proximates similarity using Locality Sensitive Hashing where hash functions are
applied on the user indices. The approaches proposed in [2] and [5] compute only
an approximation but not the actual similarity which can affect the accuracy of
recommender system.

In this paper, we introduce an incremental approach to update the tendency
of user and item in real-time. Subsequently, we propose an incremental user
similarity measure to personalize the item tendency w.r.t the active user. We
simulated a streaming environment on two real-world datasets (Yahoo Music
and Movielens 10M) and the experimental results show that the proposed tech-
nique outperforms tendency based approach and the state-of-the-art techniques
in terms of accuracy and execution time.

2 Background and Proposed Approach

As discussed in the previous section, tendency based approach is found to be
more accurate and efficient compared to the traditional CF approaches [3]. How-
ever, it cannot address the challenges posed by streaming environment. In this
paper, we address this drawback by proposing an incremental approach which is
effective in streaming scenarios. Tendency based approach computes two impor-
tant statistics namely, user tendency and item tendency. The user tendency (τu)
is computed in terms of the aggregate rating deviation from the user’s rating
to each rated item’s average rating. Likewise item tendency (τi) is computed
(Equation 1).

τu =

∑
i∈Iu

(rui − r̄i)
|Iu|

τi =

∑
u∈Ui

(rui − r̄u)

|Ui|
(1)

where rui is the rating of user u on item i, r̄u, r̄i are the average ratings of
the user and item respectively, Iu is the set of items rated by the user, and Ui

is the set of users who rated the item i. The final rating of an unrated item is
calculated based on the tendency statistics and average rating of the active user.
Although this approach needs lesser computational time, it does not update the
tendencies in streaming environment. It can be observed from Equation 1 that
the item tendency (τi) remains unchanged across the users. This leads to “non-
personalized” recommendations.

2.1 Proposed Approach

As discussed in the previous section, tendency based approach has two major
shortcomings: (a) inability to accommodate the streamlined ratings (b) general-
ized item tendency computation leading to non-personalized recommendations.
We overcome the first shortcoming by incrementally updating user and item

tendencies. Secondly, we introduce an incremental similarity update approach
to dynamically personalize the item tendency w.r.t. the active user.

Incremental Tendency Approach: To accommodate the streamlined rat-
ings and to update the preferences of the users (and items), we propose to incre-
mentally update the tendency of users and items. Equation of user u’s tendency
(τu) is split as shown in Equation 2.

τu =

∑
i∈Iu

(rui − r̄i)
|Iu|

=

∑
i∈Iu

(rui)−
∑

i∈Iu
(r̄i)

Cu(u)
=
Au −Bu

Cu(u)
(2)

where, Cu(u) is the number of items rated by user u. To accommodate in-
cremental updates, we store the item i’s mean rating (r̄i), the number of users
who rated item i (Ci(i)) , the aggregate rating value of user u (A =

∑
i∈Iu

(rui))
and aggregate mean rating of the items rated by user (B =

∑
i∈Iu

(r̄i)). In a
streaming setting, the system might face two scenarios: 1) user u newly rates
item x with rating rux (2) user v rates item x which has been previously rated by
user u. In order to update user u’s tendency (τu), we need to update the terms
A, B and Cu(u). In the first scenario, the aggregate rating value of user u is
updated as A′

u = Au + rux. Cardinality of item x (Ci(x)) and user u (Cu(u)) are
incremented by 1. Subsequently, item x’s mean rating (r̄x), aggregate mean of
the items rated by user u (Bu) and finally the user tendency τ ′u are incrementally
updated as shown below.

r̄′x =
Ci(x) ∗ r̄x + rux

Ci(x) + 1
, B′

u = Bu + r̄′x, τ ′u =
A′

u −B′
u

C ′
u(u)

In the second scenario, user v’s tendency (τ ′v) is updated by modifying item x
mean rating (r̄′x), A′

v, B′
v, C ′

u(v), C ′
i(x) (as discussed above). Apart from user v’s

tendency, user u’s tendency (τ ′u) needs to be updated. The term Bu is modified
as B′

u = Bu + r̄′x − r̄x, where r̄x is the mean of item x before arrival of rating
rvx and r̄′x is the new mean of item x. Subsequently, user u tendency is updated
as: τ ′u = (Au −B′

u)/Cu(u). It can be noted that Au, Cu(u) remain unchanged
as this item has already been rated by user u. Likewise, the tendency of all the
users who previously rated item x is incrementally updated. In a similar fashion,
computation of item tendency (τi) is split and updated incrementally1. In the
following section, we address the problem of non-personalization in tendency
based approach.

Personalized Item Tendency with Incremental Similarity Update:
Let Ui be the set of users who rated target item i. We find the set of neighbors

of active user ua who rated target item. Let Uk be the neighbor set (Uk ⊂ Ui). We
utilize the neighbors’ ratings to personalize the item tendency w.r.t. the active
user. In real–time scenarios, Pearson Correlation, Jaccard similarity measure
cannot be used as these are computationally cumbersome. Therefore, we propose
an incremental approach (inspired from Jaccard similarity) which captures the

1 Due to space constraint, we omit the incremental item tendency computation in this
paper.

Algorithm 1 Incremental Neighborhood based Similarity Measure

Input: Rating Stream R, Liked Rating Threshold θ, User Preference Matrix P ,
User Co–rated Matrix Icorated, Liked Cardinality of each User LCU , Disliked
Cardinality of each User DCU , Liked Cardinality of each Item LCI, Disliked
Cardinality of each Item DCI, List of users who rated liked each item Li, List
of users who rated disliked each item Di

Output: Updated user and item matrices

1: loop: for each rui ∈ R
2: if rui ≥ θ then
3: U l

i = Li[i] // List of users who liked item i
4: loop: for each user v ∈ U l

i

5: Update the similarity between the user u and the users in U l
i using Equa-

tion 4
6: LCU [u] = LCU [u] + 1 // Update User Cardinality
7: LCI[i] = LCI[i] + 1 // Update Item Cardinality
8: Li[i][LCI[i]] = u // Add User u to list of users who liked item i
9: end:loop

10: else
11: Ud

i = Di[i] // List of users who disliked item i
12: loop: for each user v ∈ Ud

i

13: Update the similarity between the user u and the users in Ud
i using

Equation 4
14: DCU [u] = DCU [u] + 1 // Update User Cardinality
15: DCI[i] = DCI[i] + 1 // Update Item Cardinality
16: Di[i][DCI[i]] = u // Add User u to list of users who disliked item i
17: end:loop
18: end if
19: end:loop

interest/ disinterest of the users. The proposed similarity measure between two
users, u and v is computed as shown in Equation 3.

sim(u, v) =
|Lsim(u, v)|+ |Dsim(u, v)|

|Iu ∪ Iv|
=

P (u, v)

C(u) + C(v)− Icorated(u, v)
(3)

where Lsim(u, v) is the set of items liked by users u and v, Dsim(u, v) is the
set of items disliked by users u and v. Iu, Iv are the set of items rated by users u
and v, respectively and Icorated(u, v) is the number of co-rated items. In the case
of streamlined ratings, recomputing the set of liked/ disliked items for each user
pair is expensive. Therefore, we propose an incremental approach in updating
the similarity of only those users who are affected with the new ratings. Let rui
be newly liked item i (rui > θ) and a user set V who liked this item in the
past. The similarity value between user u and user v (∀v ∈ V) is computed by
incrementally updating the terms: P ′(u, v) = P (u, v) + 1, C ′

u(u) = Cu(u) + 1

1 2 3 4# Phases

50

100

150

200

250

Ex
ec

ut
ion

 T
im

e
(in

 se
co

nd
s)

(a) Execution time in each phase on MovieLens 10M dataset
1 2 3 4# Phases

6

8

10

12

14

16

18

20

22

Ex
ec

tu
tio

n
Ti

m
e

(in
 se

co
nd

s)

(b) Execution Time in each phase on Yahoo Music dataset

IncRec - Prop Regularized SVD TencentRec StreamRec Tendency Based Approach

Fig. 1. Execution Time in each phase on YM and ML 10M datasets

and I ′corated = Icorated + 1 (as shown in Equation 4). In the similar fashion,
the similarity can be updated if rui < θ. Therefore, for each new rating in the
streamline, the similarity values of the affected users are incrementally updated
(detailed Algorithm shown in 1). To support the incremental similarity updates,
we only store the most relevant information such as the 1) list of users who
liked (and disliked) each item 2) cardinality of each user (and each item). In
order to reduce the number of accesses and processing time, we store the liked
items (users) cardinality and disliked items (users) cardinality of each user (item)
separately.

sim′(u, v) =
P (u, v) + 1

(Cu(u) + 1) + Cu(v)− (Icorated(u, v) + 1)
(4)

After obtaining the neighbors (Uk) of the active user, we utilize the ratings
of these neighbors to compute the personalized item tendency (τpi) w.r.t. active
user as shown below. Likewise, the mean of the target item (r̄pi) is personalized
w.r.t. the active user (as shown below).

τpi =

∑
ú∈Uk

(rúi − r̄ú)

|Uk|
r̄pi =

∑
ú∈Uk

rúi

|Uk|
(5)

where rúi is the rating provided by a neighbor (ú) on the target item (i) and
r̄ú is the mean rating of the neighbor ú. Finally, the overall rating of the active
user on the target item is predicted using the active user’s tendency and target
item’s personalized tendency as discussed in [3].

3 Experimental Results

In this paper, real–world datasets, MovieLens 10M (ML 10M) and Yahoo! Music
(YM) are used to evaluate our approach. To replicate a streamlined environment,
we shuffled the ratings set and divided it into five equal parts. In this first phase,
the first part of the dataset is used on training and the second part is used for
testing. In the second phase, the ratings in the second part are incrementally

1 2 3 4# Phases

0.7

0.8

0.9

1

1.1

1.2

1.3

G
IM

A
E

(b) GIMAE results on MovieLens 10M dataset

IncreRec - Prop UBCF with Jaccard Regularized SVD TencentRec StreamRec Tendency Based Approach

1 2 3 4# Phases

1.05

1.1

1.15

1.2

1.25

1.3

1.35

G
IM

A
E

(a) GIMAE results on Yahoo Music dataset

1 2 3 4# Phases

0.95

1

1.05

1.1

1.15

M
A

E

(c) MAE results on Yahoo Music dataset
1 2 3 4# Phases

0.65

0.7

0.75

0.8

0.85

0.9

M
A

E

(d) MAE results on MovieLens 10M dataset

Fig. 2. Accuracy results on MovieLens YM and ML 10M datasets

added to the training set and the third part of the dataset is used for testing
purpose. This process is repeated in remaining phases. We used 5% of the samples
in each phase for parameter setting. Mean Absolute Error (MAE) and recently
proposed Good Items MAE (GIMAE) [3] are used to evaluate the approaches.
We compare our approach (IncRec) with Tendency based CF [3], Regularized
SVD [4], traditional neighborhood based approach (UBCF with Jaccard), CF
approaches for streaming data (StreamRec [5] and TencentRec [2]). It can be
noted that all the experiments are conducted on a single CPU system.

Execution Time in Streaming Scenarios: We report the execution time
of all the approaches including IncRec in Figure 1(a) and 1(b) on ML 10M and
YM datasets, respectively. Results of UBCF with Jaccard are not reported as this
technique takes significantly longer execution time (three order of magnitude)
than the proposed approach. It can be noted (from Fig. 1) that recently pro-
posed CF approaches (TencentRec and StreamRec) have lesser execution time
than tendency based CF. However, the proposed approach outperforms all the
approaches in each phase.

GIMAE and MAE results: GIMAE focuses on the error incurred on the
predictions of good items (relevant) ratings [3]. The results of ML 10M and YM
are plotted in Fig. 2(a) and Fig. 2(b), respectively. On YM dataset, StreamRec
performs better than the existing techniques in the first two phases. Regularized
SVD performs better than the existing approaches in third and forth phases.
However, the proposed approach outperforms all the existing techniques in all
the phases. Similar trends are found on ML 10M dataset. The MAE results of
all the approaches are shown in Fig.2(c) and Fig.2(d). On YM dataset, tendency
based approach incurred least MAE in the first phase. As the ratings increase,
the proposed approach performs significantly better than tendency based CF
and other existing techniques. On ML 10M dataset, the proposed approach out-

performs the existing techniques in the first and second phase. Regularized SVD
is found to be superior than all the approaches in the third and forth phases.
However, Regularized SVD cannot be used in a streamlined setting as the ex-
ecution time is two order of magnitude slower than the proposed approach. To
summarize, the proposed approach performs significantly better than the exist-
ing techniques in terms of execution time, GIMAE and MAE.

4 Conclusion

In this paper, we proposed an incremental CF approach to tackle real–time
streaming ratings. Existing streaming algorithms in CF framework usually sac-
rifice accuracy for speed-up. However, experimental results validate that our
approach is faster and more accurate compared to many existing techniques on
real–world datasets.

References

1. F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, “Recommender Systems Hand-
book”, Springer-Verlag NewYork, Inc., 2nd edition, 2015.

2. Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. “Tencentrec:
Real-time stream recommendation in practice.” In Proceedings of the SIGMOD
International Conference on Management of Data, pp. 227-238. ACM, 2015.

3. Fidel Cacheda, Vctor Carneiro, Diego Fernndez, and Vreixo Formoso. “Comparison
of collaborative filtering algorithms: Limitations of current techniques and propos-
als for scalable, high-performance recommender systems.” ACM Transactions on
the Web, vol. 5, no. 1, pp. 2:1:2.33. 2011.

4. Arkadiusz Paterek. “Improving regularized singular value decomposition for col-
laborative filtering.” In Proceedings of KDD cup and workshop, pp. 5-8. ACM,
2007.

5. Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. “Recommendations for
streaming data.” In Proceedings of the International on Conference on Information
and Knowledge Management, pp. 2185-2190. ACM, 2016.

