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Abstract—In this paper, we investigate a double threshold
based cooperative spectrum sensing scenario. Our objective is
to determine the optimal threshold for majority rule which must
be selected for minimum error in final decision. The CR sensors
are assumed to make local hard decisions based on conventional
energy detection technique and communicate one bit decision
information to the fusion center. Here we assume that sensors
whose test statistics fall in ambiguity region do not report to the
fusion center. A majority rule is applied at the fusion center in
which at least threshold n∗ number of local sensor decision must
favor for presence of primary user (PU) to make the final decision
on presence of PU. Since choice of n∗ decides error in final
decision, we formulate an expression to compute optimal value
n∗, i.e., n∗

opt which minimizes error in final decision. Further,
due to uncertainty in number of sensors with test statistics in
ambiguity region, the threshold n∗

opt also becomes a random
variable. Hence we derive a statistical model to characterize
the density function of number of sensors with test statistics
in ambiguity region, and later exploit it to derive an expression
for expected value of n∗

opt. Our simulation results validate our
approach in which we show by selecting n∗

opt as threshold for
majority rule, the error in final decision is at its minimum value.

I. INTRODUCTION

In present scenario, cognitive radio (CR) technology has

become one of the major research area in the field of wireless

communication. This is due to its inherent capability in

addressing the crucial challenge of spectrum scarcity by oppor-

tunistic utilization of under-utilized licensed spectrum [1][2].

In order to co-exist with the licensed spectrum allocation, CR

technology allows unlicensed secondary users (SUs) to access

the spectrum without causing interference to primary user (PU)

communication. The non-interfering access of spectrum is

through detection of spectrum holes (part of spectrum unused

by PU) by CR sensors and is also termed as spectrum sensing

[3].

Spectrum sensing can be realized by several techniques such

as, energy detection, matched filter detection, cyclo-stationary

detection [3]. Out of these techniques, energy detection is

the simplest and most popular technique in which samples

sensed from surrounding spectrum environment are exploited

to compute the signal energy. The computed signal energy is

then compared to a threshold to make decision on presence or

absence of PU. The performance of energy detection technique

is however degraded by several factors, like, shadowing, multi-

path fading, noise uncertainty etc. In order to mitigate above

factors, cooperative spectrum sensing has been proposed in [4]

and [5].

In cooperative spectrum sensing, multiple CR sensors are

deployed at different spatial locations. These sensors coop-

erate in either centralized or distributed manner to make

final decision on presence or absence of PU signal [6]. For

centralized cooperative spectrum sensing, a fusion center is

employed at the apex to receive sensing information from all

local CR sensors though reporting channel. In order to make

final decision, fusion center combines the received sensing

information through either hard or soft combining techniques

[7]. In hard combining technique, CR sensors first make their

local decisions which are later combined at fusion center and

the final decision is made on the basis of AND, OR or majority

rule [8]. A n − outof − N majority rule is proposed in [9]

where optimal value of threshold n is computed to minimize

the total error in spectrum sensing. In this work, we have

analyzed energy detection based cooperative hard combining

technique as communication cost required for reporting the

local decisions is less compared to soft decision techniques

and hence is more bandwidth efficient.

Spectrum sensing based on principle of energy detection can

be visualized as a binary hypothesis problem. It is observed

that around the threshold for decision making, the probability

density function of sensed energy under the two hypotheses

have almost the same values. Thus, decisions made in the cases

when sensed energy is close to threshold are highly unreliable.

In order to improve reliability in decision making, a double

threshold based energy detection is conceptualized in [10],

[11]. Stressing on bandwidth efficiency, authors in [12] have

investigated quantization techniques to reduce average number

of bits required for reporting the local decision in view of

bandwidth constraints. Based on our limited research survey,

investigation of optimal threshold selection for majority rule

in double threshold based cooperative spectrum sensing envi-

ronment is still an unaddressed problem.

In this paper, we analyze a double threshold based coopera-

tive spectrum sensing scenario with an objective to determine

optimal majority rule threshold for minimum error in final

decision. The CR sensors (assuming N sensor are deployed)

exploit energy detection technique to make local hard decision



and communicate one bit decision information to the central

fusion center. Here we assume that sensors (assuming K such

sensors) do not report any decision to the fusion center if their

test statistics (sensed signal energy) fall in ambiguity region.

The local decisions obtained from N−K sensors are combined

at fusion center according to n∗ outof (N − K) majority

decision rule, where n∗ is the integer threshold for majority

rule. Since choice of n∗ decides error in final decision, we

formulate an expression to compute optimal value n∗, i.e.,

n∗
opt which minimizes the error in final decision. Further,

number of sensors K not participating in final decision process

being a random quantity, we derive a statistical model to

characterize the density function of K as function of: (i) signal

to noise ratio (SNR) observed at CR sensors; and (ii) width

of ambiguity region used in local decision making. Finally,

exploiting density function of K, we derive an expression for

expected value of n∗
opt which on average will reduce error in

final decision making.

II. SYSTEM MODEL

Fig. 1. Block diagram of cooperative spectrum sensing

Consider a spectrum sensing scenario shown in Fig. 1, in

which N cognitive radio (CR) sensors cooperate to sense a

given narrow band spectrum. The sensors compute local test

statistics and send their decisions to a central fusion center

which after accumulating the local decisions takes a final

decision based on majority rule. In order to compute the test

statistics, we further assume that every sensor n where n ∈
{1, 2, · · ·N} gathers L number of samples in a given sensing

time interval. Let yn(l) represent the signal sample sensed by

nth sensor at lth time index where l ∈ {0, 1, ..., L − 1}. The

test statistic Tn(y) of nth sensor for energy detection based

sensing mechanism can be expressed as,

Tn(y) =
L−1∑
l=0

|yn(l)|2. (1)

The values taken by sensed sample yn(l) can be classified in

either of two hypothesis,

H0 : yn(l) = wn(l)

H1 : yn(l) = hn(l) · s(l) + wn(l)

where, H0 and H1 denotes null and alternate hypothesis for

absence and presence of PU signal s(l); hn(l) and wn(l)
denotes Rayleigh distributed flat channel fading coefficient and

additive noise respectively, for nth CR sensor. Here additive

noise is assumed as white and is modeled by Gaussian

distribution with zero mean and variance σ2
w.

Next, we assume that the sensing time interval is small

compared to coherence time of the channel. Thus, channel

coefficients hn(l) can be identified as time invariant during

sensing interval and hence without loss of generality, hn(l)
can be denoted as hn. The expected signal to noise ratio

(SNR) for nth sensor can be expressed as η̄n = E[|hn|2]P
σ2
w

in which, E[·] is expectation operator; and P denotes power

of PU signal. We further assume that the distance between

PU and CR sensors is large compared to the distance between

sensors. Thus, signal received at individual sensors observe

identical path loss environment. Hence, under H0 hypothesis

in which PU is absent and channel is AWGN, we can assume

η̄n = η̄ := η, ∀n ∈ {1, · · ·N}. In case of H1 hypothesis

in which PU is present, it is reasonable to assume channel

coefficients are independent and identical in distribution (i.i.d).

Thus, for Rayleigh fading, instantaneous SNR η1, · · · ηN are

i.i.d. exponentially distributed with same mean η̄ := η.

Considering above assumptions, the distribution of test

statistics defined in equation (1) follows chi square distribution

[13] under binary hypothesis H0 and H1 and can be expressed

as,
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where, γ = 2Lη is non-centrality parameter with L degrees

of freedom; Γ(·) denotes Gamma function; and Iv(·) denotes

modified Bessel function of first kind and order v.

Conventional energy detectors exploit single threshold λ
for decision making and via analytical simplicity λ can be

computed as intersection point between distribution of test

statistics Tn(y) under hypothesis H0 and H1. In our anal-

ysis, we exploit double threshold based energy detection in

which we define ambiguity region of width Δth = λ2 − λ1

around threshold λ. The two thresholds can be computed as

λ1 = λ− Δth

2 and λ2 = λ+ Δth

2 . Fig. 2 shows the distribution

of Tn(y) under two hypothesis with normalized ambiguity

region of width Δ := Δth

λ and thresholds λ1 = λ(1 − Δ
2 )

and λ2 = λ(1 + Δ
2 ).

Based on computed test statistics, local hard decision at nth

CR sensor is made in favor of either of the following choices:

• if Tn(y) ≥ λ2 =⇒ PU signal is present

• if Tn(y) ≤ λ1 =⇒ PU signal is absent



Fig. 2. Ambiguity region in null and alternate hypothesis

• λ1 < Tn(y) < λ2 =⇒ No decision

After making local decisions, a one bit information Bn (Bn =

1/0 if PU is decided as present/absent) from nth sensor is sent

to fusion center through reporting channel. The local sensors

whose test statistics fall in ambiguity region do not make any

decision and hence do not communicate to fusion center. Thus,

if K is the number of local sensors whose test statistics fall

in ambiguity region, then only N −K sensors participate in

final decision making at fusion center.

Finally, at fusion center, the received one bit information

from all N − K sensors are fused together according to

following combining rule:

D =
N−K∑
j=1

Bj

{
≥ n∗, H1

< n∗, H0

(2)

where, n∗ is an integer threshold for n∗ − outof − (N −K)
majority rule. It is easy to notice that n∗ = 1 decision rule

corresponds to OR rule; n∗ = N−K decision rule corresponds

to AND rule; and n∗ = (N −K)/2 decision rule corresponds

to more than half majority rule.

III. PERFORMANCE CHARACTERIZATION OF CR SENSOR

The probability of false alarm (Pfa) is defined as the

probability of detecting the PU given that hypothesis H0 is

true, and can be computed as,

Pfa =
∫∞
λ2

P (Tn(y)|H0)dy

=
∫∞
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where, P (·|·) denotes conditional probability density function.

Similarly, probability of correctly detecting the absence of PU

conditioned over hypothesis H0 being true can be computed

as,

Pcd,ab =
∫ 0
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Next, conditioned on Hypothesis H1 to be correct, probability

of correctly detecting the PU can be computed as,

Pcd,pr =
∫∞
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where, Qm(a, b) is generalized Marcum Q-function. Similarly,

probability of missed detection defined as probability of not

detecting the PU given hypothesis H1 is correct can be

computed as,

Pmd =
∫ 0
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It can be noticed that Pcd,pr and Pmd are function of instanta-

neous SNR η (via γ = 2Lη) which is a random variable. For

channel coefficients modeled by Rayleigh distribution, SNR η
follows an exponential distribution [13] and can be expressed

as,

f(η) =
1

η
e

η
η̄ , η ≥ 0

where, η̄ is mean of SNR. Substituting y =
√
2Lη in equation

(5), expected Pcd,pr can be expressed as,
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where, λ′
2 = λ2

σ2
w

and ρ2 = 1
Lη̄ . Similarly, substituting y =√

2Lη in equation (6), expected Pmd,pr can be expressed as,
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Finally, probability that a test statistics lies inside the

ambiguity region assuming hypothesis H0 is correct can be

computed as,

PL0 =

∫ λ1

λ2

P (Tn(y)|H0)dy = 1− Pfa − Pcd,ab. (9)

Similarly, probability that the test statistics lies inside ambi-

guity region given hypothesis H1 is correct can be computed

as,

PL1 =

∫ λ1

λ2

P (Tn(y)|H1)dy = 1− P̄cd,pr − P̄md. (10)



IV. PERFORMANCE CHARACTERIZATION OF

COOPERATIVE SPECTRUM SENSING

Assuming K our of total N sensors do not participate in

decision making due to their test statistics falling in ambiguity

region, the cooperative probability of false alarm P cop
fa (N−K)

can expressed as,

P cop
fa (N −K) =

(
N

K

)
PK
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l=n∗

(
N −K

l

)
P l
faP
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Similarly, cooperative probability of miss detection P cop
cd (N−

K) can be expressed as,

P cop
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where, n∗ is an integer threshold for n∗ − outof − (N −K)
decision rule expressed in equation (2).

V. OPTIMIZATION OF MAJORITY RULE THRESHOLD

In this section, we analyze optimal voting rule for double

threshold based energy detection in which we find optimal

value of n∗, i.e., n∗
opt whose value gives the minimum error

in final decision. The error in final decision can be defined as,

Efd = P cop
fa (N −K) + P cop

md (N −K)

= P cop
fa (N −K) + (1− P cop

cd (N −K))
(13)

Let M(n∗) := P cop
fa (N − K) − P cop

cd (N − K), then Efd =
1 +M(n∗). On differentiating M(n∗) with respect to n∗ we

get,

∂M(n)
∂n∗ ≈ M(n∗ + 1)−M(n∗)(
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To get optimal value of n∗, i.e., n∗
opt we equate

∂M(n∗)
∂n∗ = 0,
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Next,taking logarithmic on both sides of equation (15), we get,

n∗ (lnPfa − lnP̄cd,pr

)
+ (N −K − n∗)

(
lnPcd,ab − lnP̄md

)
= K

(
lnP̄L1 − lnPL0

)
(16)

It is generally observed that probability of test statistics falling

in ambiguity region under hypothesis H0 and H1 is almost

same, thus PL1

PL0
≈ 1 resulting in right hand side of equation

(16) to be zero. Thus, optimal value of n∗ can be expressed

as,

n∗
opt = (N −K)

⎛
⎝ ln P̄md

Pcd,ab

ln
PfaP̄md

P̄cd,prPcd,ab

⎞
⎠ . (17)

Since n∗
opt is a positive integer quantity,

n∗
opt =

⌈
N −K

ψ + 1

⌉
, where ψ =

ln
Pfa

P̄cd,pr

ln P̄md

Pcd,ab

. (18)

VI. STATISTICAL CHARACTERIZATION OF OPTIMAL

THRESHOLD

It can be noticed from equation (18) that optimal threshold

n∗
opt for final decision is function of number of sensors not

participating in decision making K ∈ {1, 2, · · ·N} for a given

number of deployed sensors N . The number of sensors which

do not participate in decision making have their test statistics

in ambiguity region and is a random quantity. Thus, n∗
opt is

also a random variable and for its statistical characterization

we first derive a statistical model for K.

For the system model considered in section I, number

of sensors K whose test statistics fall in ambiguity region

depends on the two parameters: (i) normalized width of

ambiguity region Δ; and (ii) SNR observed at individual CR

sensors η. For a specified η, K takes large values if Δ is

large and vice-versa. Similarly, for a specified Δ, K takes

smaller values if η is large and vice-versa. Thus, to derive

probability mass function (PMF) of K we take exploit Monte

Carlo simulations to plot PMF for different values of Δ and η.

Fig. 3 and 4 shows plot of simulated PMF of K (considering

N = 10) for different normalized ambiguity region widths and

different SNR values. It is easy to notice that the PMF plot

is very close to a Gaussian distribution. Thus, we next fit

Gaussian distribution function on the sample PMF values with

expressions of mean and variance as function of SNR η and

ambiguity region width Δ.

Fig. 3. PMF of K for N = 10, η = −0.2dB and Δ = 0.1, 0.2, · · · 0.6

Here we use statistical tool box of Matlab to first fit

Gaussian distribution on probability sample points of Fig. 3

and 4. The fitting parameters, mean and standard deviation

obtained from the toolbox are tabulated in Table I and II.

Next we fit polynomial equations with η and Δ as argument

on sample values of mean μb in Table II and variance σ2
a,

p√
2πσ2

a

from Table I. Let μ and η be related by quadratic

equation,

μ = aη2 + bη + c. (19)

Using polynomial fit on six sample mean values of μb for

Δ = (0.1, 0.2, · · · , 0.6), six set of coefficient a, b and c values

can be identified. Next we fit another polynomial with Δ as



Fig. 4. Probability mass function of K for and η = −5,−4, · · · 3, 4 and
Δ = 0.4

Δ Mean μa
p√
2πσ2

a

Std. dev. σa

0.1 2.3146 0.2869 1.4112
0.2 4.6389 0.2488 1.6108
0.3 6.5241 0.2594 1.5482
0.4 7.9315 0.2976 1.3660
0.5 8.9534 0.3620 1.1963
0.6 9.7637 0.4677 1.1312

TABLE I
MEAN AND STANDARD DEVIATION PARAMETERS OF GAUSSIAN FITTING

AT SNR η = −2dB

η dB Mean μb
p√

2πσ2
b

std. dev. σb

-5 8.5251 0.3267 1.2761
-4 8.4032 0.3213 1.2859
-3 8.2277 0.3110 1.3187
-2 7.9354 0.2976 1.3659
-1 7.5079 0.2827 1.4261

TABLE II
MEAN AND STANDARD DEVIATION PARAMETERS OF GAUSSIAN FITTING

AT Δ = 0.4

arguments on six set of coefficient a, b and c values. The best

polynomial fit on coefficients is identified as, a = 0.97Δ3 −
0.91Δ2 + 0.17Δ − 0.054, b = 2.9Δ2 − 2.5Δ − 0.16, c =
−12Δ2 + 22Δ− 0.33.

Similarly, let σ and Δ be related by cubic equation,

σ2 = dΔ3 + eΔ2 + fΔ+ g (20)

Once again, using polynomial fit on five sample mean values

of σa for η = (−5, · · · ,−1)dB, five set of coefficient

d, e, f and g values can be identified. A best polynomial fitting

with η as arguments is identified as, d = −0.083η3− 1.1η2−
6.8η + 54, e = 0.21η2 + 2.3η − 72; f = 0.21η2 + 1.8η + 26;

g = −0.023η2 − 0.28η − 0.19.

Finally, let p√
2πσ2

and Δ be related by cubic equation,

p√
2πσ2

= hΔ3 + iΔ2 + jΔ+ l (21)

Using polynomial fit on five sample mean values of p√
2πσ2

a

for η = (5, · · · , 1)dB, five set of coefficient h, i, j and l
values can be identified. The best polynomial fitting with η
as arguments is identified as, h = 0.26η2 − 0.27η − 1.9;

i = −0.22η2 + 0.11η + 3.2; j = 0.045η2 − 0.11η − 1.4;

l = 0.032η + 0.42.

The continuous probability density function (PDF) of K can

be finally expressed as:

fK(k) =
p√
2πσ2

e−(k−μ)2/(2σ2) (22)

where, expression of μ, σ, and p√
2πσ2

in terms of η and Δ can

be obtained from equation (19),(20), and (21), respectively. In

Fig. 5 we verify accuracy of our statistical modeling in which

we can easily observe tight closeness between simulated PMF

and PDF obtained form equation (6) for Δ = 0.1, 0.3, 0.6 and

η = −2dB.

Fig. 5. Simulate PMF and approximated PDF of K for various Δ and η
values

In order to compute expected value of n∗
opt, the PDF of

N −K can be expressed as,

fN−K(k) = ∂FN−K(k)
∂k = ∂P (N−K<x)

∂k

= ∂(1−P (K<N−k))
∂k = ∂(1−FK(N−k))

∂k

= fK(N − k) = p√
2πσ2

e−
(N−k−μ)2

2σ2

(23)

where, FK(k) is the cumulative distribution function of K.

Finally, exploiting equation (18) expected value of optimal

threshold n∗
opt can be expressed as,

E[n∗
opt] = E

[⌈
N −K

ψ + 1

⌉]
=

⌈
N − μ

ψ + 1

⌉
. (24)

VII. SIMULATION AND RESULT

In order to illustrate efficacy of our analysis, we simulate

a cooperative CR network with N = 10 number of CR

sensors. The sensing channels between PU and CR sensors

are assumed to be i.i.d. with Rayleigh distributed flat channel

coefficients. Further, reporting channels are also assumed to be

ideal i.e., loss less communication. The PU signal is assumed

to be BPSK modulated. The conventional single threshold λ is

obtained from the intersection point of PDFs of test statistics

under hypothesis H0 and H1. At the fusion center, final

decision on presence or absence of PU is done by combining

local hard decisions of CR sensors using Majority rule as

specified in equation (2).

We validate the analysis of section VI where we have

derived the expression of optimal threshold n∗
opt for majority



Fig. 6. Error in final decision versus n∗
opt for different values of K

decision. Fig. 6 shows the simulated plot of error in final

decision Efd versus optimal value of threshold n∗
opt under

various values of K, number of CR sensors whose test

statistics fall inside the ambiguity region. It is easy to observe

that for K = 2, the error in final decision Efd reaches its

minimum value when n∗
opt = 2. The theoretical value of

n∗
opt from equation (18) with computed values of Pfa, Pcd,ab,

Pcd,pr and Pmd from section III for N = 10, K = 5,

η = −5dB and Δ = 0.3,

nopt(theoretical) =

⎡
⎢⎢⎢ 10−2

ln 0.0017
0.4869

ln 0.7606
0.7311

+1

⎤
⎥⎥⎥ = 2

Thus, theoretical value of n∗
opt in equation (18) matches with

optimal value of n∗
opt obtained from simulations.

Fig. 7. Error in final decision versus Δ for different values of SNR η

Next, we simulate error in final decision for different widths

of ambiguity region. It can be observed from Fig. 7 that for

a specified SNR η, there exists a ambiguity region width

Δ for which error in final decision is at minimum value.

Further, we can observe that for Δ = 0.1, the error in final

decision is minimum for different values of SNR. Thus, we

can compute expected optimal value of threshold E[n∗
opt] for

different values of SNR with Δ = 0.1 using equation (24).

For example, when η = −4dB, computed value E[N −K] is

7 and E[n∗
opt] = 2.

VIII. CONCLUSION

In this paper, a double threshold based cooperative spec-

trum sensing scenario is investigated. The CR sensors make

local hard decisions based on conventional energy detection

technique and communicate one bit decision information to

the fusion center. The sensors whose test statistics fall in

ambiguity region do not report to the fusion center. At fusion

center, a majority rule is applied in which integer threshold

n∗ is used to make the final decision on presence of PU.

Since choice of n∗ decides error in final decision, we formulate

an expression to compute optimal value n∗, i.e., n∗
opt which

minimizes the error in final decision. In order to address

uncertainty due to sensors with test statistics in ambiguity

region, a statistical model is proposed which is later exploit it

to derive an expression for expected value of n∗
opt.
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