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Abstract—Many practical systems tend to have some extent
of nonlinearity involved in their behavior. System identification
and control design for nonlinear dynamical systems is achieving
extensive attention in many practical applications. To model
nonlinear system behavior, many mathematical models have
been developed and employed in practical applications. This
paper mainly focuses on application of least mean square (LMS)
variants for the adaptive implementation of one such model
known as nonlinear Volterra model. The challenging problems
involved with the stability and convergence rate of traditional
least mean square based approach are shown individually. The
supporting analysis and simulations are provided to justify the
efficacy of presented work. Least mean square variants based
Volterra modeling approaches can be effectively applied in system
control design, acoustic echo cancellation and stability analysis
of the nonlinear systems.

Index Terms—Signal processing, nonlinear System modeling,
Volterra model, Least mean squares.

I. INTRODUCTION

System modeling can be delineated as the process of

constructing mathematical models of the system using limited

number of input-output measurement data of the system. These

models are important elements for control system designs, sta-

bility assessments and automation through signal processing.

In practice, most of the systems we encounter typically contain

at least some extent of nonlinearity in their dynamics [1]. In

many modeling methodologies, nonlinearity in the behavior

of system has been approximated by a linear relation in order

to avoid the underlying complexity in trade-off with modeling

accuracy [2]. Since in the control and automation fields, the

accuracy of modeling is vital for the reliable performance

of the system, more accurate nonlinear models are gaining

importance in the relevant fields.

The major classification of nonlinear system modeling ap-

proaches leads to parametric and non-parametric models [3].

Parametric models as discussed in [4], need some assumptions

or some porior knowledge of the system behavior and are

known to be white-box and grey-box models accordingly.

Unlike parametric models, nonparametric models do not re-

quire prior knowledge about system and use only the input-

output observation data of the system. The nonparametric

models may not be able to model highly complex systems

efficiently as obtaining knowledge about the system may not

be possible in many practical cases. Hence, the input-output

observation data based models are often required for modeling

and control of such systems. The Volterra and Wiener series

based nonparametric models are widely employed in practical

applications such as acoustic echo cancellation [5], rotor-

bearing systems, controller designs [6] etc. In this work,

Volterra model is considered for nonlinear system modeling.

The Volterra model comprises of a series of higher-order

kernels which can be interpreted as higher-order approx-

imations of the system’s impulse response. The order of

traditional Volterra model is usually considered to be infinite.

But due to infinite order, the model is highly complex and

impractical. In many practical applications, the finite-order

approximation of Volterra model is sufficient to model the

nonlinear dynamical systems [7], [8]. The truncated finite-

order approximation of the Volterra model makes it practicable

and has less complexity involved in the implementation and

understanding [9]. Many practical systems tend to have fading

memory characteristics in their dynamics. This means that the

response of system is influenced by the present input and only

few of the past inputs [10]. This helps to further reduce the

complexity of Volterra series based system modeling.

For effective employment in real-time applications, the

models need to be adaptive in nature [11]. The neural network

based Volterra modeling approach is adaptive in nature but

has very high complexity involved in the modeling [12]. In

this article, least mean square (LMS) variants based Volterra

modeling approach is considered to address aforementioned

issues. The traditional LMS based Volterra modeling approach

presented in [13], [14] has slow convergence rate. Also, the

instability in the performance of LMS based Volterra model

has not been addressed. The effect of learning factor on the

convergence rate and stability of the LMS based Volterra

model is analyzed in this article under different operating

conditions. The learning factor has upper and lower bound to

guarantee the stable performance of the LMS based Volterra

model and if the learning factor is not within these bounds the

stable operation of model can not be guaranteed [15]. Again,

when the input with very large eigenspread (ratio of largest

and smallest eigenvalue) than training input data is presented

to the LMS algorithm, the model parameters grow unbounded

[16], [17]. This is known as weight-drifting [18].

In this article, the slow convergence rate and weight-drifting

issues in traditional LMS based Volterra model are shown indi-

vidually and simulation results are presented for the same. To

overcome the weight-drifting problem in traditional Volterra



model, leaky LMS based approach is employed where a small

leakage factor is introduced in the parameter update equation.

To improve the convergence speed, the modified leaky LMS

based Volterra model parameter estimation approach is em-

ployed.

The notations followed to represent different entities in this

article are as follows: any symbol with bar head is used for

representing a vector and small case alphabets represent a

scalar quantity.

The article is presented in six different sections and are

briefed as follows: In Section I, the existing methodologies

and related issues are discussed to justify the motivation

towards this work. The mathematical model of Volterra series

based nonlinear system modeling approach is formulated in

Section II. In Section III, LMS based Volterra model pa-

rameter estimation approach is presented. Sections IV and V

present the leaky LMS based and modified leaky LMS based

Volterra model parameter estimation approaches respectively.

In Section VI, numerical examples are simulated to justify the

effectiveness of above methodologies and simulation results

has been presented. Finally, the conclusive comments are

provided in Section VII.

II. FORMULATION OF VOLTERRA SERIES BASED

NONLINEAR SYSTEM MODELING

Any 1st-order linear system can be modeled in terms of the
input signal and the system’s impulse response as given below
[19].

d (t) =

∞
∫

−∞

h (τ )x (t− τ ) dτ , (1)

where h(t) is the linear impulse response of the system, x(t)
is the instantaneous input and d(t) is the corresponding instan-

taneous output. And the above equation can be interpreted as

usual one-dimensional linear convolution similar to that of a

stable LTI system.

( )x t ( )d t
( )h t

Fig. 1: LTI system model

But modeling the nonlinear systems is a much more com-

plex problem, as usually only the linear impulse response of

the system is known.

In this setup, to model the nonlinear systems, we consider

the traditional Volterra model. It is implemented as a series

of nonlinear volterra kernels entailing kernels from 1st-order

to higher-order volterra kernels. The linear impulse response

h(t) in (1) can be considered as 1st-order Volterra kernel.
Now the nonlinear system can be modeled using traditional

Volterra model as follows

d (t) = H {x (t)}+ η (t) , (2)

here H is the higher-order Volterra operator and can be

represented as Hr = [h1, ..., hr] and hr represents the rth-

order Volterra kernel.

( )x t ( )d t
( )H t

Fig. 2: Volterra model of the system

The Volterra model can be further defined as [19].

d (t) =

∞
∑

r=1

∞
∫

−∞

· · ·

∞
∫

−∞

hr (τ1, τ2, . . . , τr)

r
∏

i=1

x (t− τr) dτr , (3)

above equation represents the infinite-order Volterra model
for a nonlinear continuous time-invariant system. Further, the
Volterra model in (3) can be rewritten to model any causal
nonlinear system as

d (t) =
∞
∑

r=1

∞
∫

0

· · ·

∞
∫

0

hr (τ1, τ2, . . . , τr)
r
∏

i=1

x (t− τr) dτr , (4)

In the above model representation i.e. (4), time can be dis-
cretized for ease of understanding and reducing the complexity
in practical implementation of model. Therefore, the equation
(4) can be represented in discretized form as follows [19]

d (t) =
∞
∑

r=1

∞
∑

τ1=0

· · ·
∞
∑

τr=0

hr (τ1, τ2, . . . , τr)
r
∏

i=1

x (t− τr) . (5)

In most of the practical systems, the system output is mostly
influenced by present input and few of the past inputs. So, the
model parameters and complexity can be further reduced by
introducing finite fading-memory factor [10]

d (t) =

∞
∑

r=1

M−1
∑

τ1=0

· · ·

M−1
∑

τr=0

hr (τ1, τ2, . . . , τr)

r
∏

i=1

x (t− τr) , (6)

where M is fading memory factor of the system, and it can be

considered appropriately based on the system to be modeled.

The implementation of above infinite-order Volterra model
is impractical because of the infinite number of parameters
involved in the modeling and the high complexity of the
Volterra kernels. The model accuracy and complexity depends
on the order of Volterra kernel and hence it has to be selected
as the trade-off between the former two [7], [8]. So, the
infinite-order Volterra kernel has to approximated to a finite-
order Volterra model which is given as follows

d (t) =

R
∑

r=1

M−1
∑

τ1=0

· · ·

M−1
∑

τr=0

hr (τ1, τ2, . . . , τr)

r
∏

i=1

x (t− τr) , (7)

here R is the order of the nonlinear Volterra model. As

R increases the accuracy of Volterra model improves but,

consequently the modeling complexity increases.

In our work, we have considered second-order approxima-
tion of Volterra model for modeling of nonlinear system. The
second-order approximation of Volterra model is described
below

d (t) =
M−1
∑

τ1=0

h1 (τ1) x (t− τ1)

+
M−1
∑

τ1=0

M−1
∑

τ2=0

h2 (τ1, τ2)x (t− τ1) x (t− τ2) ,

(8)



where h1 and h2 are the 1st-order and 2nd-order Volterra

kernels respectively.
The linear regression form of the model given in (8) can be

written as
d (t) = Θ̄T

X̄ (t) + η (t) , (9)

where Θ̄ and X̄ are given as,

Θ =
[

h̄1, h̄2

]T
∈ M+M2

, (10)

X̄ (t) =

[

x (t) , ..., x (t− (M − 1)) , x2 (t) , ...,
x (t) x (t− (M − 1)) , ..., x2 (t− (M − 1))

]T

,

(11)
and

h̄1 = [h1 (1) , ..., h1 (M)] ∈ M
, (12)

h̄2 =
[

h2 (1) , ..., h2

(

M
2
)]

∈ M2

. (13)

The estimate of optimal Volterra model parameters Θ̄opt can
be obtained iteratively by updating Θ̄est at each instant using
the instantaneous estimation error as follows

dest (t) = Θ̄T
est(t)X̄ (t) , (14)

e (t) = d (t)− dest (t) . (15)

Fig. 3 gives the overview of Volterra model parameter estima-

tion approach,

+

-

Nonlinear

System

Volterra Model

( )d t

( )est
d t

( )x t ( )e t

Fig. 3: Volterra model parameter estimation

Least mean square algorithm is used to update the Volterra

model parameters at each instant.

III. LEAST MEAN SQUARE ALGORITHM

The cost function for LMS based Volterra model parameter
estimation approach is represented as follows

C (t) =
T
∑

t=1

∣

∣

∣
d (t)− Θ̄T

est(t)X̄ (t)
∣

∣

∣

2

, (16)

where T denotes the total number of data samples and Θ̄est(t)
is the instantaneous Volterra model parameter estimate. To
minimize the above quadratic cost function and find optimum
value of Θ̄est, the derivative of cost function has to be taken
w.r.t. Θ̄est and is given as follows

∇Θ̄T
est

(t)C (t) = −2e (t) X̄ (t) , (17)

where the instantaneous estimation error e(t) and the in-

stantaneous estimate of the system output for corresponding

instantaneous input are given by (15) and (16) respectively.
The update equation for LMS based Volterra model is

derived based on the following mathematical expression

Θ̄T
est(t+ 1) = Θ̄T

est(t)−
α

2
∇Θ̄T

est
(t)C (t) . (18)

Using equation (17) and (18), the final expression is derived
for updating the instantaneous model parameters Θ̄est(t) and
is given as

Θ̄T
est(t+ 1) = Θ̄T

est(t) + αe (t) X̄ (t) , (19)

where α is a small positive parameter which controls the
convergence rate and steady state error of the Volterra model.
When α is small convergence rate is slow, the steady state
error is less and vice-versa. The value of α has to be bounded
within certain limits so that model parameters does not grow
unbounded and system remains stable. The bound on α for
model stability is given as [15]

0 < α <
2

λmax (RX)
, (20)

where λmax is the largest eigenvalue of the covariance of
the instantaneous input data X̄(t) i.e. RX and is given as

RX = E
[

X̄ (t) X̄(t)
T
]

. The more robust bound on α value

than (20) can be considered as

0 < α <
2

Tr (RX)
, (21)

where Tr (RX) denotes the sum of all diagonal elements of

RX which is same as sum of all eigenvalues of RX . If the

value of α is not within this bounds, the stable performance

of LMS based Volterra model parameter estimation can not

be guaranteed. In LMS based Volterra model parameter esti-

mation approach, we consider the statistics of input data to be

known for deciding the appropriate value of learning parameter

α.

1t t= +

Start

Initialize , 1
est

tΘ =

( ) ( )Compute and
est

d t e t

( ) ( )Collect andX t d t

Update
est

Θ

1t t= +

Fig. 4: Flowchart for estimation of Volterra model parameters

using LMS algorithm



IV. LEAKY LMS BASED VOLTERRA MODEL

The drawback of LMS based Volterra model parameter

estimation approach is it’s slow convergence rate and the

input statistics are considered to be known to determine

the appropriate value of α. When an unknown input signal

is presented to the LMS based Volterra model parameter

estimation approach, the algorithm behavior can not be pre-

dicted. Whenever the unknown input signal presented has very

large eigenspread, the parameters in LMS algorithm grow

unbounded and system becomes unstable. This behavior of

LMS is known as weight drifting and this causes arithmetic

overflow as well as unbounded growth of Volterra model

parameters.
To mitigate this unbounded growth of parameters and to

make LMS based Volterra model parameter estimation stable
a small leakage factor is introduced in the cost function of
LMS based Volterra model

C (t) = e(t)2 + γ Θ̄T (t) Θ̄ (t) , (22)

where γ is known as leakage factor and lies in the range given
as 0 < γ < 1. Using basics from derivation of the LMS
algorithm, the parameter update equation for leaky LMS based
Volterra model becomes

Θ̄T
est(t+ 1) = (1− γα) Θ̄T

est(t) + αe (t) X̄ (t) (23)

and the bound on α for stability of algorithm becomes

0 < α < 2
γ+λmax(RX)

or 0 < α < 2
γ+Tr(RX)

.
(24)

V. MODIFIED LEAKY LMS BASED VOLTERRA MODEL

The leaky LMS algorithm solves the problem associated
with the stability of LMS based Volterra model parameter
estimation in case of input signal with large eigenspread. But
the convergence rate of both LMS and leaky LMS is still slow.
To increase the convergence speed, a modified leaky LMS
algorithm, the cost function has been modified by introducing
the two exponentials in the cost function of leaky LMS [20].
The cost function of modified leaky LMS based Volterra model
becomes

C (t) = (exp (e (t)) + exp (−e (t)))2 + γ Θ̄T
est (t) Θ̄est (t) (25)

and the instantaneous parameter update equation for Volterra
model parameters becomes

Θ̄T
est(t+ 1) = (1− γα) Θ̄T

est(t) + 2αX̄ (t) sinh (e (t)) , (26)

here the term sinh (e (t)) increases the update value by large

amount even for small value of instantaneous error. Thus

increases the convergence rate significantly especially in the

start. Also the leakage factor controls the unbounded growth

of Volterra model parameters.

VI. SIMULATION EXAMPLE

A. Controlling the unbounded nature of LMS based Volterra

model:

Simulation setup: The system with following nonlinear

input-output relation has been considered for simulation

d (t) = 2.73 x(t) + 0.5 x(t− 1) + 1.12 x(t− 2) + 0.9 x(t)2

+1.35 x(t− 1)2 − 2.8 x(t− 2)2 + 0.39 x(t)x(t− 1)
−1.35 x(t− 1) x(t− 2) − 0.67 x(t)x(t− 2) ,

(27)

where d (t) is the instantaneous system output, x (t) is the in-

stantaneous input and x (t− 1), x (t− 2) are previous inputs.
According to equations (8), (9), (11) and (12), the second-

order Volterra model parameters for a system with fading
memory factor M = 3 are given as

Θ̄ =
[

h̄1, h̄2

]T
∈ R

12
, (28)

where
h̄1 = [h1 (1) , ..., h1 (3)] ∈ R

3
, (29)

h̄2 = [h2 (1) , ..., h2 (9)] ∈ R
9

(30)

and the instantaneous input sequence X(t) is given as

X̄ (t) =





x (t) , x (t− 1) , x (t− 2) , x2 (t) ,
x2 (t− 1) x2 (t− 2) , x (t)x (t− 1) ,
x (t− 1)x (t− 2) , x (t)x (t− 2)





T

. (31)

Due to symmetry property of volterra kernels the parameters
in h̄2 are reduced to six and hence the total parameters in Θ̄
are effectively nine. The Θ̄opt in (27) for above example is
given as

Θ̄opt =

[

2.73, 0.5, 1.12, 0.9, 1.35,
−2.8, 0.39, −1.35, −0.67

]

. (32)

To analyze the performance of LMS, leaky LMS and modified
leaky LMS based Volterra model, the metrics mean-square
deviation (MSD) and mean-square error (MSE) are considered.
The parameters MSD and MSE at any time instant t are
defined as

MSD (t) = E
∥

∥Θ̄est(t)− Θ̄opt(t)
∥

∥

2
(33)

MSE (t) = E‖best(t)− b(t)‖2 (34)

The model is trained for random Gaussian input signals with

eigenspread less than 0.2× 103 and hence the stability bound

on α becomes 0 < α < 0.02 (from 20). Learning parameter

α is taken as 0.01 and product of α and γ to be 0.5× 10−4.

The simulation is performed on 10,000 input samples and the

performance of LMS and leaky LMS under normal operating

condition is given in Fig. 5.
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Fig. 5: Mean-square deviation for input with small eigenspread

But when the random Gaussian signal with eigenspread



0.5 × 103 is presented to the LMS based Volterra model,

the parameters grow unbounded and may result in arithmetic

overflow and affect the system stability as well.

Time
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Fig. 6: Mean-square deviation for input with large eigenspread

It can be seen from Fig. 6, the leaky LMS based Volterra

model limits the unbounded parameter growth and avoids

arithmetic overflow. This is achieved with little degradation

in performance of the model as can be seen from Fig. 5. The

selection of leakage factor is a critical issue. The leakage factor

has to be selected based on performance requirements of the

different applications.

The leaky LMS based approach did not solve slow conver-

gence problem in traditional LMS based Volterra model as it

can be seen from Fig. 5. To improve the convergence rate,

modified leaky LMS based Volterra model is considered and

simulation results are presented in the following subsection.

B. Improving the convergence rate of LMS and leaky LMS

based Volterra model:

The same system which is considered for above simulation

is considered for this simulation. The input signals are taken

as random Gaussian signal having variance 1 and the random

Gaussian noise with variance 10−3 is added to the signal. The

α value is taken as 0.01 and the product of α and γ is taken

to be 0.5×10−4. The above example is simulated over 10000

samples i.e. T = 10, 000 and the performance parameters are

plotted in the Fig. 7.
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Fig. 7: Mean-square deviation in Volterra model parameter

estimation
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Fig. 8: Mean-square error in system output prediction

It can be seen from Fig. 7, the modified leaky LMS based

Volterra model parameter estimation improves the convergence

rate as compared to LMS and leaky LMS based Volterra model

parameter estimation. But the performance of modified leaky

is slightly lower compared to LMS based Volterra model. In

Fig. 9, the predictions of 1st−order and 2nd−order Volterra

model approximations are plotted to show it’s effectiveness in

modeling nonlinear dynamical systems.
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Fig. 9: Prediction performance of 1st−order and 2nd−order

Volterra model approximations

VII. CONCLUSION

This article demonstrated the Volterra model parameter

estimation approaches based on LMS algorithm and it’s two

variants. The LMS based Volterra model parameter estimation

approach has slow convergence rate and unstable behavior.

The MATLAB simulations presented in this work show that

the leaky LMS and modified leaky LMS based methodologies

are very effective in solving these problems. The model can

be made more accurate and stable by appropriate selection of

the leakage factor.
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