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Abstract—In real electrical systems, the parameters of the
subsystems are inherently somewhat different. Synchronous be-
havior in DC micro-grids (MGs) can be achieved by means
of the coupling of these subsystems under the condition of
parameters mismatch. The method of detuning of one or more
internal parameters in a statically coupled system can give rise
to amplitude death (AD), a coupling induced stabilization of a
dynamical system. This coupling technique has the advantage
that this provides an open-loop stability solution for DC-DC
converters in a DC MG in the presence of CPLs. The bifurcation
analysis shows that the small detuning of parameters under
strong coupling eliminates the standard oscillatory behavior from
the large region of the parameter space, where the dominance
of the AD can be observed. And this AD dominance produces
a reliable dynamical control mechanism in the general case of
coupled nonlinear oscillators. The goal of this work is to identify
the dynamic states of coupled nonlinear oscillators and investigate
how the heterogeneity of the system interacts with the coupling
to produce coherent behavior.

Index Terms—Constant power load (CPL), DC microgrid,
amplitude death (AD), equilibrium point (EP).

I. INTRODUCTION

When flexibility comes into the picture of AC as well
as DC micro-grids (MGs), one can say that DC MGs are
better choices than that of the AC grids. This is because they
are more suitable for energy storage and renewable sources
as almost all of the loads nowadays are inherently DC [1],
[3], [4]. This increased reliability and flexibility of DC MGs
have also helped engineers to select them in major appli-
cations such as telecommunication industries [5], low-power
consumer electronics, vehicular technologies [6], industrial
power systems [7], naval ships [8], residential homes [9],
commercial buildings [10], and so on. Though DC MGs are
more stable than AC MGs [11]; but there are some serious
stability issues because of the interfacing power electronics
for achieving different levels of voltages during the integration
of sources, loads, and energy storage devices [2], [12]. In
cascaded architecture, point-of-load (POL) converters with a
resistive load ideally behaves as an instantaneous CPL [13].
The negative incremental resistance caused by CPL essentially
brings the nonlinearity to the systems and results in a limit
cycle oscillations. Moreover, this leads to the undesired oscil-
lations [14] in the systems and thus the state variables can’t

converge to the desired equilibrium point (EP) or fixed point
in terms of discrete time domain.

Therefore, it is well accepted that the destabilizing problem
of DC power-grid networks needs to be solved for future prac-
tical use. Several strategies for enhancing the stability of an
operating point of such grid have been demonstrated; mainly
using passive damping [15], application of a bi-directional
DC-DC converter, use of a virtual capacitor [16], feedback
controller [13], and control for multiple power sources and
loads [17]. These investigations have been tackled the desta-
bilization problem from the power electronics viewpoint, and
mostly follows the small signal linear stability analysis [18].
However, the stabilizing problem of such nonlinear systems
cannot be analyzed by linear system dynamics. It is, therefore,
necessary to apply the concept of nonlinear analysis. AD is a
mathematical phenomenon of a nonlinear system by which the
desired EP is stabilized due to the coupling [19]. There are
mainly two reasons that can cause AD such as strong coupling
and sufficiently different natural frequencies of interaction
between the networks [20]. Recently, the model of the coupled
systems are analyzed by Huddy and Skufca [21] using the
concepts of nonlinear dynamics and synchronization of two
interconnected converter topologies where the topology allows
application of AD solution to this problem in a pair of DC bus
systems.

Investigation reveals that the operations of power electronics
converters can be characterized by cycle switching of the
circuit topologies which give rise to a variety of chaotic
phenomena. In such chaotic systems, one important feature
is that even the fully identical oscillators can’t generate
synchronous waveforms. The reason behind this is their ex-
treme sensitiveness to the change in initial conditions. In
numerical simulations, this can be avoided by setting same
initial conditions for each system; which results in the same
chaotic waveforms at the output. Meanwhile, in the real
electrical systems, this is not possible. However, in practice the
parameters are inherently somewhat different; so the study of
synchronous behavior is necessary by coupling the oscillators
under parameter mismatch. In this paper, we will discuss
in detail analysis about the effect of heterogeneity on AD
based stability solving for constant power loaded converters
system named DC MG. Using bifurcation analysis, we have



Fig. 1. (a) Conceptual diagram of a DC Bus system (PV: photovoltaic cell, UG: utility grid, WT: wind turbine, FC: fuel cells). (b) A simplified buck-based
distributed power architecture. (c) Block diagram of coupled LRC systems for static coupling with a simple resistor Rk as a coupling link.

Fig. 2. Stable limit cycle behavior of the destabilised system due to CPL.
Numerical results for the ideal buck LRC, with the parameters PL =
0.4 W, E = 10 V, L = 4 mH, C = 50 µF, q = 0.5, fs = 20 KHz.

investigated the behavior of coupled oscillators system under
small parametric mismatch. It is shown that this mismatch
can eliminate standard oscillatory solutions bringing the dom-
inance of AD in a large region of parameter space.

II. DC MICROGRID AND CPL

As the output of photovoltaic and fuel cells are DC in
nature, it is, therefore, easier and more efficient to connect
them directly to a DC distribution system or, through a
controlled DC/DC converter. For example, in traction power
systems DC series motors are employed because of its high
starting torque and better voltage regulation characteristics.
Another example of DC distribution are the data centers,
where the sensitive loads are connected for uninterrupted
power supplies even if the main power sources are lost.
Similarly, in the variety of power system applications based
on advanced power-electronics technique such as international

space station, spacecraft, electric and hybrid electric cars,
telecommunications, terrestrial computer systems, and medical
electronics etc. the supplies are mostly of the DC types.
The multi-converter power electronics systems, also known
as distributed power systems have various configurations like
cascading, parallel, stacking, load/source splitting etc. based
on different operational objectives and designs.

Therefore, considering a multi-converter DC bus system
shown in Fig. 1(a), one could include many LRCs that regulate
the main bus voltage, such as the one located between the
main bus and the local microgrid source converters, which are
loaded by other converters. The loads in such systems are the
combination of tightly controlled POL converter and a fixed
output resistor Ro [22]. Since efficiencies of POL converters
are usually very high and this pair can be characterized as
an instantaneous CPL with negative incremental resistance
property. Due to this negative impedance instability, there is
a decrease in the voltage stability margin which can cause
significant oscillations. DC MGs consist of many sources and
loads leads to the entire system to more complex, non-linear
and coupled. However, DC microgrid stability analysis is
constantly improving by various techniques like load shedding,
direct connection of energy storage to the main bus, filtering,
and control approaches [13]. Most of these studies are mainly
relied on CPLs based small signal analysis [23], and their
conclusions are that in constant power loaded dc systems, the
EP of an LRC is unstable. Some other previous studies have
large signal analysis [24] method to study the CPL effects on
system stability. An instantaneous CPL can be represented by

i =
PL

v
∀ v ≥ ε (1)

where i is the input current, PL is the CPL power, v is
the input voltage of the main bus feeding the CPL, ε is an



Fig. 3. Heterogeneous systems showing sustained oscillations before coupling and AD after coupling using parameters PL = 0.4 KW, E = 10 V, L1 =
8 mH, L2 = αL1, α = 0.5, C1 = C2 = 50 µF, q = 0.5, fs = 20 KHz, Rk = 35 Ω. (a) Simulation results. (b) Oscilloscope traces. Y- channel: 1
division = 1 V.

arbitrarily small positive value. The switch model dynamics
for the ideal buck LRC case (r = 0, Ro = ∞) with a CPL
(see Fig.Fig. 1(b)) can be written as

di

dt
=
qE

L
−
v

L
;

dv

dt
=

i

C
−
PL

Cv
; i ≥ 0, v ≥ ε (2)

where i and v are the inductor current and capacitor volt-
age respectively. The switching function which controls the
MOSFET is given by q and its fast average is given by the
instantaneous duty cycle d.

During the transient, it’s possible that the trajectories of the
system can cross the boundary (i = 0), but the converter topol-
ogy only allows unidirectional current through the inductor
(i ≥ 0). Therefore it is important to include the discontinuous
conduction mode (DCM) operation of the converters [25] for
low currents. Hence, the average state equations no longer
describe the mathematical modeling of the converters and their
behavior. A full order model of the converter is represented
by

di

dt
=
qE

L
− 2ivfs
q(E − v)

;
dv

dt
=

i

C
− PL

Cv
; i < 0 (3)

where fs is the switching frequency of the converter. It is very
difficult to calculate the eigenvalues of the system (Eqs. (2)
and (3)), as these stability criteria involve different conduction
modes of the converters for different conditions. Numerical
computation method using XPPAUT [26] is thus used to
determine the stability and/or eigenvalues of the system. It is
observed that the EP 0 is unstable because of the eigenvalues
have positive real parts 1 as shown in Fig. 2. The limit cycle
marked in Fig. 2 shows the sustained oscillations in voltage
as well as the current of the converter.

III. AD CAUSED BY HETEROGENEITY

It is observed that stability of the EP remains unchanged
when two identical systems are statically coupled [21], e.g.

0Given by the intersection of x-nullcline (orange) and y-nullcline (green)
1λ1 = 159.84 + j2230.35, λ2 = 159.84− j2230.35

with a linear resistor as coupling link. However, modifying
one or some internal parameters in each system help us to
achieve AD for a certain range of coupling link resistance. For
our model, we vary the inductance parameter because the EP
of the system does not depend on inductance and changing the
inductance value changes the frequency of oscillations. Then,
for the sufficiently different frequencies and a strong enough
coupling, oscillators will pull each other off its limit cycle and
as an effect, both will settle to the EP. So the heterogeneity
brings stability and all the oscillators come to the stationary.
For the two coupled systems let L2 = αL1, where L1 and L2

are inductance of the two limit cycle oscillators (LCO1 and
LCO2) and α is the parameter which describes heterogeneity
of the two systems. Considering the coupling of two systems
as shown in Fig. 1(c), current through the coupling link ik is
given by

ik =
v1 − v2
Rk

(4)

where v1 and v2 are the capacitor voltages of two LRCs. The
dynamics of the two diffusively coupled systems models are
given by

dv1

dt
=

i1

C1
−

P1

C1v1
−
ik

C1
(5)

di1

dt
=


qE − v1
L1

; if i1 ≥ 0

qE

L1
−

2i1v1fs

q(E − v1)
; if i1 < 0

dv2

dt
=

i2

C2
−

P2

C2v2
+
ik

C2
(6)

di2

dt
=


qE − v2
L2

; if i2 ≥ 0

qE

L2
−

2i2v2fs

q(E − v2)
; if i2 < 0



Fig. 4. One parameter bifurcation diagram. (a) α ∈ (0, 1) is the bifurcation parameter and Rk = 40 Ω. (b) Rk ∈ (0, 70 Ω) is the bifurcation parameter and
α = 0.5.

where P1 = P2 = PL is the power of CPL used in both
systems. i1 and i2 are inductor currents of two LRCs. C1

and C2 are the capacitances of two LRCs. The heteroge-
neous coupling brings AD as shown in Fig. 3(a). The same
phenomenon is being validated experimentally as given in
Fig. 3(b). It has been observed that heterogeneity stabilizes
the statically coupled systems model which can be concluded
from the eigen values computed by the numerical method
(λ1 = −76.154 + j2102.8, λ2 = −76.154 − j2102.8, λ3 =
−104.17 + j1677.01, λ4 = −104.17− j1677.01).

IV. BIFURCATION ANALYSIS

As it is difficult to derive the range of parameters for the
AD region, numerical analysis helps us to estimate this range.
There are some useful tools for exploring how a dynamical
system changes with respect to the variation of parameters.
The most widely observed route to the AD is through Hopf
bifurcation (HB), where coupling induces stability of the
EP of the uncoupled systems. Continuation bifurcation is a
straightforward technique to analyze the bifurcation in which a
particular solution (such as EP or limit cycle) is followed as the
parameter changes. The detection of EPs and limit cycles can
be obtained automatically from the numerical tools provided
by AUTO.

In Fig. 4(a), the plot gives the output voltages for the
coupled systems as a function of the heterogeneous parameter
α keeping the coupling resistance Rk constant. The stability
analysis shows that AD occurs for α < 0.59. The red line
represents stable EPs and the black thin line represents the
unstable EPs. A subcritical HB occurs at α = 0.59 giving
unstable periodic orbits implied by empty blue circles. This
HB point separates the stable and unstable regions. Similarly
in Fig. 4(b), the plot gives the output voltages as a function
of Rk keeping α constant. The stability region is in the range
24.6 Ω < Rk < 62.5 Ω. Here two subcritical Hopf bifurcations
exist denoted by HB1 (high-frequency oscillations) and HB2

(low-frequency oscillations) at Rk = 24.6 Ω and Rk = 62.5 Ω
respectively. Stability region exists between these two points

Fig. 5. Two parameters bifurcation diagram for Rk ∈ (0, 70 Ω) and α ∈
(0, 1) as the bifurcation parameters.

HB1 and HB2. The two parameters bifurcation diagram is
given in Fig. 5 where AD island is given by the shaded area
of α vs Rk plot.

V. CONCLUSION
The stability issues of DC MGs can be overcome by various

feedback control methods. However, AD solution method has
its uniqueness as it is free from any external controller circuits,
hence, the implementation cost and complexity are reduced.
Moreover, the coupling of inhomogeneous systems deals with
the stability of DC MG when there is a mismatch of parameters
in DC-DC converters systems with CPL. This heterogeneity
scheme can also be a matter of interest for identical systems
which have different initial conditions. The phenomena of the
AD has been achieved in the coupled systems by numerically
as well as experimentally. In this work, we study the change in
bifurcation scenario due to mismatch of parameters. However,
this work can be extended to the study of synchronization
among multiple oscillators in DC MG networks.
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