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Summary

The parametric instability characteristics of doubly curved panels subjected to various in-plane

static and periodic compressive edge loadings, including partial and concentrated edge loadings

are studied using finite element analysis. The first order shear deformation theory is used to

model the doubly curved panels, considering the effects of transverse shear deformation and

rotary inertia. The theory used is the extension of dynamic, shear deformable theory according

to the Sander’s first approximation for doubly curved shells, which can be reduced to Love’s

and Donnell’s theories by means of tracers. The effects of static load factor, aspect ratio, radius

to thickness ratio, shallowness ratio, boundary conditions and the load parameters on the prin-

cipal instability regions of doubly curved panels are studied in detail using Bolotin’s method.

Quantitative results are presented to show the effects of shell geometry and load parameters on

the stability boundaries. Results for plates and cylindrical shells are also presented as special

cases and are compared with those available in the literature.

1. INTRODUCTION

Structural elements subjected to in-plane periodic forces may lead to parametric reso-

nance, due to certain combinations of the values of load parameters. The instability may

occur below the critical load of the structure under compressive loads over a range or

ranges of excitation frequencies. Several means of combating resonance such as damping

and vibration isolation may be inadequate and sometimes dangerous with reverse results

[1]. Thus the parametric resonance characteristics are of great technical importance for

understanding the dynamic systems under periodic loads. The dynamic instability char-

acteristics of plates subjected to uniform loads were studied by Hutt and Salam [2] using
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Finite Element Method. Parametric resonance in shell structures under periodic loads had

been of considerable interest since the subject was studied by Bolotin [3], Yao [4], Bieniek

et al. [5] and Vijayaraghavan & Evan-Iwanowski [6]. The method of solution of these

class of problems were to first reduce the equations of motion to a system of Mathieu-Hill

equations and the parametric resonance characteristics were studied by different meth-

ods. A detailed study of resonances had carried out by Koval [7]using Donnel’s shell

theory. The stability of the steady state response of simply-supported circular cylinders

subjected to harmonic excitation was investigated by Radwin and Genin [8] using vari-

ational equations. The parametric instability characteristics of circular cylindrical shells

under static and periodic loading were studied by Nagai and Yamaki [9] using Galerkin

procedure and Hsu’s method. The dynamic stability and non-linear parametric vibration

of isotropic cylindrical shells with added mass were considered by Kovtunov [10]. The

dynamic instability of composite simply-supported circular cylindrical shell was analysed

by the Method of Multiple Scale(MMS) by Cederbaum [11]. A perturbation technique

was employed by Argento and Scott [12]to study the instability regions subjected to axial

loading . The effects of static load and static snap through buckling on the instability for

spherical and conical shells were investigated [13]using Galerkin method. The dynamic

instability of conical shells are studied by Tani [14] using Finite Difference method and

by Ng et al. [15] using Generalized Differential Quadrature method. The parametric

resonance of a rotating cylindrical shell subjected to periodic axial loads is investigated

by Ng et al. [16]. The parametric resonance of cylindrical shells under combined static

and periodic loading was studied using different thin shell theories by Lam and Ng [17,

18]. Most of the investigators studied the dynamic stability of uniformly loaded closed

cylindrical shells with a simply supported boundary condition, using analytical approach.
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The practical importance of stability analysis of doubly curved panels/open shells has

been increased in structural, aerospace (skin panels in wings, fuselage etc.), submarine

hulls and mechanical applications but this type of open shells/panels have received less

attention because of complexities involved. The free vibration of doubly curved shallow

shells/curved panels was studied by a number of researchers [19-22] and well reviewed

[23,24]. Recently the vibration under uniform initial stress and buckling stresses were

studied for thick simply-supported doubly curved open shells/panels through Hamilton’s

principle [25]. The buckling characteristics of isotropic flat panel [26, 27] and closed cylin-

drical shell [28, 29] due to concentrated loadings were also investigated. The study of the

parametric instability behaviour of curved panels is new. Recently the dynamic stability

of uniformly loaded cylindrical panels with transverse shear effects is studied by Ng, Lam

and Reddy [30]. Besides this, the applied load is seldom uniform and the boundary condi-

tion may be completely arbitrary in practice. The application of non-uniform loading and

general boundary conditions on the structural component will alter the global quantities

such as free vibration frequency, buckling load and dynamic instability region(DIR).

In the present study, the parametric instability of doubly curved panels sub-

jected to various in-plane uniform and non-uniform, including partial and concentrated

edge loadings are investigated. The influences of various parameters like effects of static

& dynamic load factors, aspect ratio, radius to side ratio, thickness, various boundary

conditions, percentage of loaded length and position of concentrated loads on the insta-

bility behaviour of curved panels have been examined. The present formulation of the

problem is made general to accommodate a doubly curved panel with finite curvatures in

both the directions having arbitrary load and boundary conditions.
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2. THEORY AND FORMULATIONS

The basic configuration of the problem considered here is a doubly curved panel as shown

in Figure 1, subjected to various non-uniform harmonic in-plane edge loadings.

2.1 GOVERNING EQUATIONS

The equation of equilibrium for free vibration of a shear deformable doubly curved panel

subjected to in-plane external loading can be written as:
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where N0
1 and N0

2 are the external loading in X and Y directions respectively. C1 and C2

are tracers by which the analysis can be reduced to that of Sander’s, Love’s and Donnell’s

theories. The equation of motion can be written in matrix form as:

[M ]{q̈}+ [[Ke]− P [Kg]]{q} = 0 (2)

The in-plane load P (t) is periodic and can be expressed in the form

P (t) = Ps + PtcosΩt (3)

where Ps is the static portion of P. Pt is the amplitude of the dynamic portion of P and Ω

is the frequency of excitation. The static buckling load of elastic shell Pcr is the measure
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of the magnitudes of Ps and Pt,

Ps = αPcr, Pt = βPcr (4)

where α and β are termed as static and dynamic load factors respectively. Using Equa-

tion (3), the equation of motion is obtained as:

[M ]{q̈}+ [[Ke]− αPcr[Kg]− βPcr[Kg]cosΩt]{q} = 0 (5)

Equation (5) represents a system of second order differential equations with periodic

coefficients of the Mathieu-Hill type. The development of regions of instability arises from

Floquet’s theory which establishes the existence of periodic solutions. The boundaries of

the dynamic instability regions are formed by the periodic solutions of period T and 2T,

where T = 2π/Ω. The boundaries of the primary instability regions with period 2T are of

practical importance [3] and the solution can be achieved in the form of the trigonometric

series

q(t) =
∞∑

k=1,3,5

[
{ak}sinkθt

2
+ {bk}coskθt

2

]
(6)

Putting this in Equation (5) and if only first term of the series is considered, equating

coefficients of sin θt
2

and cos θt
2

the equation becomes

[
[Ke]− αPcr[Kg]± 1

2
βPcr[Kg]− Ω2

4
[M ]

]
{q} = 0 (7)

Equation (7) represents an eigenvalue problem for known values of α, β and Pcr. The

two conditions under a plus and minus sign correspond to two boundaries of the dynamic

instability region. The eigenvalues are Ω, which give the boundary frequencies of the in-

stability regions for given values of α and β. In this analysis, the computed static buckling

load of the panel is considered as the reference load in line with Moorthy et el. [31] and

Ganapathi et al. [32].
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An eight-nodded curved isoparametric quadratic element is employed in the present anal-

ysis with five degrees of freedom u, v, w, θx and θy per node. First order shear deformation

theory (FSDT) is used and the shear correction coefficient has been employed to account

for the nonlinear distribution of the shear strains through the thickness. The displace-

ment field assumes that mid-plane normal remains straight but not necessarily normal

after deformation, so that

ū(x, y, z) = u(x, y) + zθx(x, y) (8)

v̄(x, y, z) = v(x, y) + zθy(x, y)

w̄(x, y, z) = w(x, y)

where,

θx, θy are the rotations of the mid surface

Also ū, v̄, w̄ and u, v, w are the displacement components in the x, y, z directions at any

section and at mid- surface respectively. The constitutive relationships for the shell are

given by

F = [D]{ε} (9)

where

F = [N1, N2, N6,M1,M2,M6, Q1, Q2]
T (10)
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A Reissner’s shear correction factor of 5/6 is included for all numerical computations. Ex-

tension of shear deformable Sander’s kinematic relations for doubly curved shells [33,34]

are used in the analysis. The linear strain displacement relations are
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The element geometric stiffness matrix for the doubly curved panel is derived using the

nonlinear strain components as:
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The element matrices are derived as:

Elastic stiffness matrix

[Ke]e =
∫

[B]T [D][B]dxdy (15)

Geometric stiffness matrix

[Kσ]e =
∫

[Bg]
T [σ̄][Bg]dxdy (16)

Consistent mass matrix

[M ]e =
∫

[N ]T [I][N ]dxdy (17)

The overall matrices [Ke], [Kσ] and [M] are obtained by assembling the corresponding

element matrices.

2.2 COMPUTER PROGRAM

A computer program has been developed to perform all the necessary computations. Ele-

ment elastic stiffness matrices and mass matrices are obtained using a standard procedure.

The geometric stiffness matrix is essentially a function of the in-plane stress distribution

in the element due to applied edge loadings. Since the stress field is non-uniform, plane

stress analysis is carried out using the Finite element method to determine the stresses and
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these are used to formulate the geometric stiffness matrix. Reduced integration technique

is adopted in order to avoid possible shear locking. Element matrices are assembled into

global matrices, using skyline technique. Subspace iteration method is adopted through-

out to solve the eigenvalue problems.

3. RESULTS AND DISCUSSIONS

The convergence studies have been carried out for fundamental frequencies of vibration

of cantilevered doubly-curved shells/panels for three different cases and the results are

compared with Leissa et al. [20] in Table 1. From the above convergence study, 10 × 10

mesh has been employed to idealise the panel in the subsequent analysis. This idealisation

is chosen in order to apply compression to a small fraction of the edge length and also for

convergence criterion. To validate the formulation further, the free vibration frequency

and critical buckling load for simply-supported uniformly loaded shells/panels, are com-

pared with the literature [25] in Table 2. The above studies indicate good agreement

between the present study and those from the literature. Once the free vibration and

buckling results are validated, the dynamic instability studies are made.

3.1 PARAMETRIC INSTABILITY STUDIES

The parametric instability regions are plotted for a uniaxially loaded doubly curved panel

with/without static component to consider the effects of static load factor, aspect ratio,

boundary conditions, radius to thickness ratio, shallowness ratio, load band width and

positions of concentrated edge loading. A simply supported doubly curved panel of di-

mensions a = b = 400mm,h = 4mm,E = 0.7e11N/m2, ν = 0.3, ρ = 2800kg/m3, Rx =

Ry = 2000mm is described as a standard case and the computed buckling load of this

panel is taken as the reference load in line with Moorthy et el. [31].The non-dimensional

excitation frequency Ω = Ω̄a2
√

ρh/D is used throughout the dynamic instability stud-
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ies (unless otherwise mentioned), where Ω̄ is the excitation frequency in radian/second,

D = Eh3

12(1−ν2)
. The effect of static component of load for α = 0.0, 0.2, 0.4 and 0.6 on the

instability regions is shown in Figure 2. Due to increase of static component, the instabil-

ity regions tend to shift to lower frequencies and become wider. Figure 3 shows the effect

of aspect ratio on instability regions. It is observed that, the onset of dynamic stability

occurs much later with decrease of the aspect ratio but with increasing width of instability

regions. Figure 4 shows the influence of different boundaries(SSSS, SCSC, CCCC) on the

principal instability regions. As expected, the instability occurs at a higher excitation

frequency from simply supported to clamped edges due to the restraint at the edges. The

width of the instability regions are also decreased with the increase of restraint at the

edges. The effect of radius to thickness ratio on instability regions is shown in Figure 5.

The onset of dynamic instability regions are observed to be increasing with decrease of

Ry/h ratio. Figure 6 shows the effect of shallowness ratio on instability regions. As seen

from the figure, the instability excitation frequency is higher for decrease of shallowness

by decreasing Rx and Ry. Studies have also been made (Figure 7) for comparison of in-

stability regions for different shell geometries. It is observed that the excitation frequency

increases with introduction of curvatures from plate to doubly curved panel. However the

hyperbolic paraboloid shows similar instability behaviour as that of a flat panel with no

stiffness being added due to the curvature of the panel. Similar observations were also

obtained by Leissa and Kadi[19] on a study of vibration of shells. The study is then ex-

tended for biaxial loading on the parametric excitation behaviour of doubly curved panels.

The results are presented in Table 3. It was observed that instability appears at lower

excitation frequency with increasing dynamic instability region. The investigation is then

extended for partial and concentrated edge loading from one end. The load parameter
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of c/b=0 corresponds to concentrated loads at the two opposite edges. A double pair of

partial & concentrated loading from both ends and other types of non-uniform loading

are also studied. The curved panels under non-uniform loading behave differently to that

of under uniform loading. The onset of dynamic stability occurs earlier with the increase

of percentage of loaded edge length. Figure 8 shows that the instability occurs later for

a small patch loading (c/b=0.2) as compared to a higher band width (c/b=0.8). This

may be due to the constraint at the edges. Similarly, the instability also depends on the

positions of concentrated loading (Figure 9). As observed, the instability occurs at lower

excitation frequencies with increase of distance from the edges (c/b). The curved panel

with a small patch of loading behaves in a similar manner to that of a panel subjected to

a pair of concentrated loading near the edges and shows highest stiffness among all the

loadings considered.
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4. CONCLUSION

The results of the stability studies of the shells can be summarised as follows:

1. Due to static component, the instability regions tend to shift to lower frequencies with

wide instability regions showing destabilizing effect on the dynamic stability behaviour of

the curved panel.

2. The onset of instability occurs at higher excitation frequencies with lower Ry/h ratios.

3. The instability regions have been influenced due to restraint provided at the edges.

4. The onset of instability region appears earlier for rectangular panels with the increase

in aspect ratio.

5. The instability regions start at higher frequencies with lower shallowness ratio.

6. The curved panels show more stiffness with addition of curvatures. But the hyperbolic

paraboloid panels behave like a plate with no stiffness being added due to curvature of

the shell.

7. The instability appears at lower excitation frequency with increasing dynamic insta-

bility region with biaxial loading.

8. The onset of instability occurs at higher excitation frequencies for small patch and

concentrated loads near the edges but at lower frequencies for long band width and con-

centrated loads away from the edges.
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NOTATIONS

a, b Dimensions of shell

Rx, Ry Radii of curvatures

c Percentage of loaded length/distance of concentrated load from edge

E Young’s modulus

ν Poisson’s ratio

ρ Mass density

G shear modulus

[K] Stiffness matrix

[Kσ] Geometric stiffness matrix

[M ] Mass matrix

{q} Vector of generalized cordinates

w Deflection of mid-plane of shell

θx, θy Rotations about axes

Ω, ω Frequency of forcing function and transverse vibration

α, β Static and dynamic load factors

Pcr Critical buckling load
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Table 1 Convergence of non-dimensional fundamental frequencies without in-plane load

of doubly curved shells/panels.

a/b = 1, b/h = 100, b/Ry = 0.2, ν = 0.3

Non dimensional frequency, ω = ω̄a2
√

(ρh
D

)

Mesh Non-dimensional frequencies of shells

Division Cylindrical Spherical Hyperbolic paraboloid

4× 4 8.3837 6.6529 6.6072

8× 8 8.3679 6.5787 6.5015

10× 10 8.3653 6.5748 6.4969

Leissa[20] (8.3683) (6.5854) (6.5038)

Names of authors: Sri S. K. Sahu

Prof. P. K. Datta

No. of Table-1
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Table 2 Non-dimensional fundamental frequencies and buckling loads for the doubly-

curved shell/panel.

a/b = 1, ν = 0.3

Non dimensional frequency, ω = ω̄h
√

( ρ
G
), λ = Nxb2

D

a/h a/Rx b/Ry Non-dimensional frequencies Non-dimensional Buckling loads

Present FEM Matsunaga[25] Present FEM Matsunaga[25]

10 0 0 0.09303 0.09315 36.8284 36.9242

0.2 0.2 0.09822 0.09826 41.0487 41.0872

0 0.2 0.09426 0.09436 37.8075 37.8904

-0.2 0.2 0.09264 0.09276 36.5235 36.6162

20 0 0 0.02386 0.02387 38.7757 38.7945

0.2 0.2 0.02873 0.02872 56.2143 56.1620

0 0.2 0.02515 0.02515 43.0581 43.0670

-0.2 0.2 0.02373 0.02378 38.4618 38.5033

Names of authors: Sri S. K. Sahu

Prof. P. K. Datta

No. of Table-2
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Table 3 Primary regions of instability for the doubly-curved panel subjected to different

loading conditions .

a = b = 400mm,h = 4mm, E = 0.7e11N/m2, ν = 0.3, ρ = 2800kg/m3

Rx = Ry = 2000mm,α = 0.2

Non dimensional frequency, Ω = Ω̄a2
√

ρh/D

β uniaxial loading biaxial loading

U L U L

0 133.0780 133.0780 128.3204 128.3204

0.2 135.3942 130.7208 133.0780 123.3793

0.4 137.6714 128.3203 137.6714 118.2320

0.6 139.9115 121.0582 142.1164 107.3603

0.8 142.1164 110.2660 146.4265 91.6730

Names of authors: Sri S. K. Sahu

Prof. P. K. Datta

No. of Table-3
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No. of illustration-1
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Figure 3 Effect of aspect ratio on instability region of the curved panel for a/b= 1,

2 and 3, a/Rx = 0, b/Ry = 0.2, α = 0.2

24



Figure 4 Effect of boundary conditions(SSSS, CSCS, CCCC) on instability region

of the curved panel for a/b=1, a/Rx = 0.0, b/Ry = 0.2 and α = 0.2
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List of legends for illustrations

Figure 1 Geometry and co-ordinate systems of a doubly curved panel

Figure 2 Effect of static load factor on instability region of a fully loaded curved panel:

a/b=1, a/Rx = 0.2, b/Ry = 0.2, for α = 0.0, 0.2, 0.4, 0.8

Figure 3 Effect of aspect ratio on instability region of the curved panel for a/b= 1, 2 and

3, a/Rx = 0, b/Ry = 0.2, α = 0.2

Figure 4 Effect of boundary conditions(SSSS, SCSC, CCCC) on instability region of the

curved panel for a/b=1, a/Rx = 0.0, b/Ry = 0.2 and α = 0.2

Figure 5 Effect of thickness on instability region of the curved panel for a/b=1, Rx/h =

Ry/h = 625, 500, 375 and α = 0.2

Figure 6 Effect of Ry/b on instability region of the curved panel for a/b=1, Rx/a =

Ry/b = 3, 5, 10, α = 0.2

Figure 7 Effect of curvature on instability region of different curved panels for a/b=1, flat

panel (a/Rx = b/Ry = 0), Cylindrical (a/Rx = 0, b/Ry = 0.2), Spherical (a/Rx = b/Ry =

0.2), Hyperbolic paraboloid (a/Rx = −0.2, b/Ry = 0.2) and α = 0.0

Figure 8 Effect of percentage of loaded edge length on instability region of a spherical

panel for a/b=1, a/Rx = b/Ry = 0.2, c/b = 0.2 and 0.8, α = 0.2

Figure 9 Effect of position of concentrated load on instability region of a spherical shell

for a/b=1, a/Rx = b/Ry = 0.2, c/b = 0, 0.25 and 0.5, α = 0.2
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Answer to the questions and revision of the paper “Parametric

Instability of Doubly Curved Panels Subjected to Non-Uniform

Harmonic Loading”

by S. K. Sahu and P. K. Datta

(Manuscript Reference Number JSV00/096)

Q 1. The parametric stability analysis methodology used by the authors is based on

Bolotin’s method which is suitable only for harmonic type loadings. As such, “...Non-

Uniform loading” in the title may be misleading and should be changed to “...Non-Uniform

Harmonic loading”.

A. The title of the paper has been changed as suggested by the Reviewer.

Q 2. The authors start the theoretical formulation by considering stability analysis. As

a result, how the in-plane loading is included in the shell equations is not presented. The

authors should at least present the three equilibrium equations of motion of Sander’s with

consideration for the external loading.

A. The equilibrium equations of doubly curved panel as per Sander’s theory with con-

sideration for external loading has been presented as Equation(1) in section 2.1 in the

revised manuscript.

Q 3. The authors present results (Fig 8) where there is partial loading along the boundary

edges. However, there is no mention in the formulation how this is done. This should be

clearly stated.

A. The formulation of the problem considering the partial edge loading has now been

explained in section 2.2 of the revised manuscript.
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Q 4. The authors only consider loading in the x-direction. An interesting study that

should not entail too much extra work would be to study the effects of double sided (i.e.

x and y-directions simultaneously loaded) loading on the instability regions.Would the

region sizes increase substantially or would they remain more or less similar? This would

be of more interest to readers.

A. The effect of double sided loading on the instability region has been studied as sug-

gested by the Reviewer. The results are presented in Table 3 and conclusions drawn.

5. A. The suggested references along with few current ones have been included in the

revised paper.
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Figure 10 Effect of percentage of loaded edge length on instability region of a cylin-

drical panel for a/b=1, a/Rx = 0, b/Ry = 0.2, c/b = 0.2 and 0.8, α = 0.2
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Figure 11 Effect of position of concentrated load on instability region of a cylindrical

panel for a/b=1, a/Rx = 0, a/Ry = 0.2, c/b = 0, 0.25 and 0.5, α = 0.2

21. B. Singh and S.M. Hassan 1998 Journal of Sound and Vibration 214, 29-55 Transverse

vibration of triangular plate with arbitrary thickness variation and various boundary con-

ditions.

22. A.A. Popov, J.M.T.Thompson and J.G.A. Croll 1998 Nonlinear Dynamics 17, 205-

225 Bifurcation analysis in the parametrically excited vibrations of cylindrical panels 33.

J. Moorthy, J.N. Reddy J.N. and R.H. Plaut 1990 International Journals of Solids Struc-

tures 26, 801-811 Parametric instability of laminated composite plates with transverse

shear deformation.

34. M. Ganapathi, P. Boisse and D. Solaut 1999 International Journal for Numerical
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Methods in Engineering 46, 943-956 Non-linear dynamic stability analysis of composite

laminates under periodic in-plane loads.

35. C.W. Bert 1980 Proceedings of International Conference on Recent advances in struc-

tural mechanics, England 2, 693-712 Vibration of composite structures.

36. J.N. Reddy 1984 Journal of Engineering Mechanics, ASCE 110, 794-809 Exact solu-

tions of moderately thick laminated shells.

37. R.A. Chaudhuri and Abu-arja K.R 1988 Journal of Engineering Mechanics, ASCE

26, 587-604 Exact solution of shear-flexible doubly curved antisymmetric angle-ply shells.
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Table 4 Non-dimensional critical buckling stresses for the doubly-curved shells/panels.

a/b = 1, ν = 0.3

Non dimensional frequency, Λ = Nxb2

π2D

a/h a/Rx b/Ry Uniaxial loading Biaxial loading

Present FEM Ref [?] Present FEM Ref [?]

10 0 0 3.7315 3.7412 1.8658 1.8706

0.2 0.2 4.1591 4.1630 2.0796 2.0815

0 0.2 3.8307 3.8391 1.9153 1.9195

-0.2 0.2 3.7006 3.7100 1.8503 1.8550

20 0 0 3.9288 3.9307 1.9644 1.9654

0.2 0.2 5.6957 5.6904 2.8479 2.8452

0 0.2 4.3627 4.3636 2.1814 2.1818

-0.2 0.2 3.8970 3.9012 1.9485 1.9506

Names of authors: Sri S. K. Sahu

Prof. P. K. Datta

No. of Table-4
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Table 2 Comparison of Non-dimensional frequency for the CFFF doubly curved shells.

a/b = 1, b/h = 100, b/Ry = 0.5, and ν = 0.3

Non dimensional frequency, ω = ω̄
√

(ρh
D

)

Ry/Rx Reference Mode sequence number

1 2 3 4

-1.0 Present FEM 8.2174 9.3882 36.1877 36.3633

Liew and Lim [?] 8.2255 9.4091 36.251 36.433

Leissa et al. [?] 8.2429 9.4219 36.294 36.503

-0.5 Present FEM 10.0339 11.1091 37.4797 40.3620

Liew and Lim [?] 10.056 11.117 37.559 40.410

Leissa et al. [?] 10.062 11.129 37.590 40.430

0.0 Present FEM 10.5674 16.9768 30.5998 43.1793

Liew and Lim [?] 10.589 16.981 30.641 42.211

Leissa et al. [?] 10.595 16.991 30.650 42.234

0.5 Present FEM 10.2579 13.5836 27.5486 37.2232

Liew and Lim [?] 10.284 13.606 27.608 37.020

Leissa et al. [?] 10.295 13.628 27.624 37.048

1.0 Present FEM 8.9856 9.7314 30.3317 33.8534

Liew and Lim [?] 9.0054 9.7612 30.404 33.943

Leissa et al. [?] 9.0327 9.7809 30.476 33.998

Names of authors: Sri S. K. Sahu

Prof. P. K. Datta

No. of Table-2
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