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Abstract. Wireless sensor networks (WSN) are often inaccessible to
human and are at least deployed in such environment such as deep forest,
various hazardous industries, hilltop, and sometimes underwater. The
occurrence of failures in sensor networks is inevitable due to continuous or
instant change in environmental parameters. A failure may lead to faulty
readings which in turn may cause economic and physical damages to the
environment. In this work, a thorough investigation has been conducted
on the application of adaptive neuro-fuzzy inference system (ANFIS)
for automated fault diagnosis in WSN. Further, a kernelized version of
ANFIS has also been studied for the discussed problem. To avoid the
model’s undesired biases towards a specific type of failure, oversampling
has been done for multiple version of the ANFIS model. This study would
serve as a guideline for the community towards the application of fuzzy
inference approaches for fault diagnosis in sensor networks. However, the
work focuses on the automated fault diagnosis in open air WSN and has
no applicability in underwater sensor network systems.
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1 Introduction

Wireless sensor network (WSN) is a set of sensor nodes that are often low in cost,
power, memory storage, and are small sized and sometimes multi-functional. A
sensor node contains sensory unit, processor, memory storage, actuator, and
power supply unit. The sensor nodes are sometimes equipped with multiple sen-
sory units to collect various environmental parameters for further processing.
It is well known that WSN has found their applicability in numerous applica-
tions such as target tracking, environmental monitoring, health monitoring [1].
Generally, sensor nodes are densely deployed in an unstructured manner for
the purpose of sensing, processing and communicating with each other. In an
unstructured deployment in a comparatively human inaccessible environment,
failure of sensor nodes is inevitable. A failure in a WSN leads to faulty readings
which in turn may cause economic and physical damages to the environment.



For example, failures that might occur specifically in human health monitoring
environment or in chemical power plants are quite prominent. Diagnosis of faults
in WSN is quite a well-studied research for the community [2]. There are four
different types of sensor faults that can be seen in WSN such as hard fault, soft-
permanent fault, intermittent fault, and transient fault. The latter three types
of faults can be grouped in the category of soft fault.

Accurate diagnosis of fault in a real-time environment from the sensor read-
ings data is quite a challenge for the community. To the best of our belief, the
majority of fault diagnosis works focused on the detection of two broad types
of faults such as (a) hard fault, (b) soft fault. These works did not focus more
on the three sub-categories of soft faults as mentioned earlier. The present work
focuses on the automated diagnosis of the soft faults. Machine learning (ML)
based techniques such as Neural Networks are very popular approaches in the
field of automated fault diagnosis, for example, a work presented in [3,4], and
handling uncertainty by incorporating fuzzy logic[5]. Further, the works carried
out in this field have been identified in the section 5.

In the present work, we investigate the application of adaptive neuro-fuzzy
inference system (ANFIS) for automated fault diagnosis in WSN. Our proposed
method has been investigated for all three different types of soft faults. Further,
we equip the ANFIS module with radial basis kernel (RBF) to study whether
such an approach could improve the performance of conventional ANFIS tech-
nique. In real-time WSN, the occurrence of few categories of soft faults is min-
imal that offers another challenge for an ML approach to accurately diagnose
the faults from the available sensor readings. In this work, we also study the
automatic synthesis of faulty sensor readings from the available data using a
relative distance based oversampling technique such as SMOTE.

The rest of the paper is presented as followed. We present our proposed ker-
nelized ANFIS approach in section 2. The experimental design has been studied
in the section 3. Results obtained by the proposed approach have been discussed
in the section 4. The work has been concluded in the section 6.

2 Kernelized ANFIS

ANFIS is a special class of multi-layer adaptive networks that incorporate both
neural networks (NN) and fuzzy logic principles to model uncertain systems [6]
such as WSN. Neural networks are supervised learning models that approxi-
mate the underlying transformation function from the historical input-output
data pairs. The function suggested by the NN could further be used for future
predictions where the output is unknown. In fuzzy logic, a rule-base drawn from
the available historical data and the control signal is generated by firing the rule
base. ANFIS makes the selection of the rule base more adaptive to the situation
and the problem under consideration.

Fig. 1 shows the architecture of a typical ANFIS with two inputs, four rules
and one output for the first-order Sugeno fuzzy model, where each input is
assumed to have two associated membership functions (MFs). For a first-order



Sugeno fuzzy model, a typical rule can be written as

If x is Ai and y is Bj , then fij = aijx+ bij + cij (1)

where, Ai and Bj are the membership functions (MF) for the inputs x and
y respectively. The constants aij , bij and cij are consequent parameters [6].
A set of such rules can be obtained by changing the inputs or the MF. The
functionality of each layer can be briefed as follows3. The layer 1 is an adaptive
layer that generates the membership grades for the inputs using the MF. The
MF parameters in this layer are called the premise or antecedent parameters.
The layer 2 computes the firing strength of each of the rules by doing simple
multiplication or minimum operation, usually denoted as Π. Layer 3 computes
the normalized firing strength by taking individual firing strengths from the
layer 2. Each node in the layer 4 an adaptive node and outputs the product
of the normalized firing strength and the first order polynomial for the first
order Sugeno model. The final layer (layer 5) computes the output by taking the
summation of the outputs from the previous layer. Learning of the parameters
in layer 1 (premise parameters) and layer 4 (consequent parameters) happens by
the squared error signal generated at the output.
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Fig. 1: ANFIS architecture

The hypothesis that we are testing in this work is that a problem, when
cast in higher dimensional feature space is more likely to be separable than that
in a lower dimensional space [7]. The present work investigates this hypoth-
esis by adding a nonlinear transformation layer where the original inputs are
transformed to a new feature space in a higher dimension. Each computational
unit j in this layer does a nonlinear transformation (ft in Fig.2) using RBF
kernel defined in Equation (2) of the input data pattern which is denoted as

3 For page constraints, we have intentionally omitted major mathematical background
behind the functionality of each layer. Readers are advised to go through the main
ANFIS article by Professor Jang [6].
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Fig. 2: Kernelized ANFIS architecture (The ANFIS block this figure uses the
layer 1 through to layer 5 of Fig. 1 where the inputs to the ANFIS are kernelized
using Radial basis functions)

x = (x1, x2, . . . , xn).

ft = ϕ(x) = ϕ(x− xj) = exp

(
− 1

2σ2
j

||x− xj ||2
)
, j = 1, 2, . . . ,m (2)

In the Equation (2), xj is the center of the data points; ||·|| represents the
Euclidean distance. The number of neurons in the RBF transformation layer, m
has been decided by applying the k-means clustering [8] on the available training
data with only the input features. It is believed that patterns sharing common
characteristics would be grouped together. If there are N patterns in a dataset,
we decided that the value of k in k-means clustering is strictly lesser than N
(k < N), and strictly higher than the number of features of the data, that is
k > n to support our initial hypothesis of transformation to higher dimension.
It should be noted that m = k.

In reality, sensor data from the faulty sensors are available in few chunks than
the normal data. These sensors might belong to any of the three classes of the soft
faults. We employed synthetic minority oversampling technique (SMOTE) [9] to
generate the sensor data that are similar to the available data. This approach also
adds an investigation of the synthetic sampling technique to the fault diagnosis
in WSN. The final algorithm has been presented in the following.

3 Design of Experiment

The present work is a simulation-based experiment where the data is obtained
from real-world experimental setup as explained further.

The experiment was conducted in an outdoor environment. In this experi-
ment, 10 sensor nodes were deployed in an area of 5 × 5 m2. Fig. 3 shows the
deployment of all these sensor nodes. Each sensor module is designed by Arduino



Data: Sensored data from the central receiver
Result: Fault diagnosis results on unseen test data
Step 0: Initialization and setting necessary ANFIS parameters and m;
Step 1: Partition the available data into training data (Dtrain) and testing data
(Dtest) by random sampling of the patterns from the whole dataset;

Step 2: Obtain the oversampled data, DosTrain = SMOTE(Dtrain);
Step 3: Apply k-means algorithm on DosTrain without the class labels and
obtain centroids of each clusters;

Step 4: Apply RBF kernelization scheme to get the data (DrbfOsTrain) for
ANFIS training;

Step 5: Train ANFIS on DrbfOsTrain using conjugate gradient method;
Step 6: Test the trained ANFIS using the (Dtest);

Algorithm 1: RBF kernelized ANFIS with oversampling for fault diagnosis
in WSN

Uno embedded and At mega 8-bit micro-controller, DHT11 temperature sensor,
MRF24J40MA transceiver, and 2200 mAh battery. All these sensor nodes are
communicated to the base station with a gateway node. The diagnosis program
is run in the base station. All the sensor nodes and the gateway node are pre-
sented in the transmission range of each other. The transmission power is set
–16 dBm for the communication range in between 5m to 6m. The gateway node
is presented in between 6m distance.

Sensor modules

Fig. 3: Experimental setup in an outdoor environment. A gateway node commu-
nicates with these sensor modules.

Initially, all the nodes were considered fault free in nature. The sensor nodes
temperature data were collected every hour of a daytime. Then after analyzed



the normal sensor data, we set the minimum threshold temperature value θ1,
and maximum threshold value θ2. The sensor nodes data within the θ1 and θ2
is considered as fault free and exceeding the range, it is considered as faulty.
Let xi be the sensor data from sensor node ni at tth time instance. So, the
sensor data is denoted as xi(t). For sensor node ni, we collects the sensor data
x = (xi(t)); t = 1, . . . , T . From the time t = 1 to T , all the sensor data were
analyzed. The data xi(t) follows the normal distribution N (xi;σ

2
i ), where xi is

the actual data and σ2
i is the variance of fault data at ni sensor node (noise

to make the node faulty). So this value, we are represented as in the Eq. (3).
Similarly, depending on the probability of noisy data, the faulty sensor readings
could be generated for different types of faults.

xi(t) = xi + ei(t); ei ∼ N (xi;σ
2
i ) (3)

All the ANFIS based simulations have been conducted in MATLAB R2017a
on a quad-core system with 4GB RAM. After obtaining the sensor readings
(including the faulty sensor readings data), the whole dataset was partitioned
for the training and testing simulation of various ANFIS approaches. The train
and test partitioning were done by randomly selecting the patterns as per 70%:
30% ratio respectively. For all the ANFIS experiments, the number of training
epochs was set to 100. The dataset summary has been reported in the Table 1.

Table 1: Available sensor data summary (N : Total number of patterns,
N(class = i): Number of patterns of ith class)

Data N N(class = 1) N(class = 2) N(class = 3) N(class = 4)

Original 5000 2000 500 1500 1000

Train (Dtrain) 3500 1398 333 1064 705

Test (Dtest) 1500 602 152 452 294

It should be noted that the oversampling was only applied to the training
dataset. The test dataset remains intact throughout the experiment except for
the RBF kernelization experiment in which both the training and testing are to
be transformed to a new higher dimensional feature space where the centroids
were obtained using the k-means clustering on the training data only. Further,
the results are analyzed in the following section.

4 Results

The spread of the RBF kernel, σ plays an important role as an amplifier of
the distance between a pattern and the center of the kernel. If this distance is
much larger than σ, the kernel function tends to be very minimal. Moreover, it
has a high impact on the decision rules–specifically, boundary–that can affect the



prediction of the testing data. Therefore, the results for two different values of the
spread is noted (a) σ = 5, (b) σ = 10. The number of sub-grouping(clustering)
in the available training data, m has been varied from the 15 to 25 with equal
separation of 5 to investigate the effect of the transformed feature space in a
slightly higher dimension (m ≈ n;m = 15, n = 10) and a dimension as large as
twice the input feature space (m > 2n;m = 25, n = 10).

We used root-mean-squared error (RMSE) as a performance evaluation mea-
sure of ANFIS models. A few sample training error convergence curve are pre-
sented in the Figures 4 through to 6. For the further investigate the quality of
fault diagnosis in terms of the faulty nodes prediction rate, we used the accuracy
measure. We also report the prediction rate after training and after testing to
clearly investigate the specialization and generalization capability of the devel-
oped ANFIS models. These results are summarized in Table 2 where m is the
size of the transformed feature space and σ is the spread of the RBF kernel.

0 10 20 30 40 50 60 70 80 90 100

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

(a) ANFIS

0 10 20 30 40 50 60 70 80 90 100

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

(b) ANFIS-SMOTE

Fig. 4: Error convergence during training

The present investigation suggests that a higher dimensional transformation
of the input feature space prior to the learning rules by the ANFIS might not
lead to an improved predictive capability of the models for the present problem
on the faulty diagnosis from the available data. It can be revealed from the data
reported in the Table 2. The conventional ANFIS and the ANFIS with SMOTE
oversampling are quite comparable with each other based on their presently
achieved generalization capability on the test dataset. However, the RBF kernel-
ized ANFIS with and without oversampling are very highly specialized towards
the training data that is leading to over-fitting and in turn poor generalization.
Hence, such a model might not be preferable for the present problem. However,
further experiments must be conducted carefully before concluding in a general
sense.
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(a) ANFIS (m = 15, σ = 5)
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(b) ANFIS (m = 15, σ = 5)-SMOTE

Fig. 5: Error convergence during training
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(a) ANFIS (m = 25, σ = 10)
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(b) ANFIS (m = 25, σ = 10)-SMOTE

Fig. 6: Error convergence during training

5 Related works

Several different soft computing or statistical techniques have been employed
recently for studying the fault diagnosis in WSN. A statistical approach called
neighboring coordination method was used where the authors used the statistical
variance of the sensor readings for predicting the fault [10]. A Takagi-Sugeno-
Kang (TSK) based fuzzy inference system was applied for detection of soft per-
manent faults and transient faults in WSN [11]. Fuzzy transformation based
multi-layer feed-forward neural network [12] has been successfully implemented
for automated fault diagnosis in WSN [13]. However, this work used a single
membership function to generate a single transformed feature instead of three
different features as in our present work. There are many different approaches
to automated fault diagnosis in WSN that use different kinds of neural net-



Table 2: Fault diagnosis (accuracy of prediction) scores achieved by various AN-
FIS approaches (RMSE has been noted for Epoch1 and the Epoch 100 shown
as transition ‘→’)

Method Training (%) Testing (%) RMSE

ANFIS 95.88 94.80 0.5549 → 0.0827

ANFIS-SMOTE 98.55 94.20 0.9098 → 0.0285

ANFIS (m = 15, σ = 5) 98.17 16.46 0.6201 → 0.0369

ANFIS (m = 15, σ = 10) 93.60 16.80 0.7435 → 0.1135

ANFIS (m = 20, σ = 5) 79.82 34.53 0.5874 → 0.4002

ANFIS (m = 20, σ = 10) 88.51 20.20 0.7795 → 0.2025

ANFIS (m = 25, σ = 5) 99.14 32.60 0.5292 → 0.0179

ANFIS (m = 25, σ = 10) 97.88 29.86 0.7442 → 0.0381

ANFIS (m = 15, σ = 5)-SMOTE 99.28 17.93 0.7415 → 0.0141

ANFIS (m = 15, σ = 10)-SMOTE 99.47 18.53 0.9703 → 0.0099

ANFIS (m = 20, σ = 5)-SMOTE 99.60 38.73 0.9095 → 0.0076

ANFIS (m = 20, σ = 10)-SMOTE 99.33 22.26 1.0170 → 0.0111

ANFIS (m = 25, σ = 5)-SMOTE 99.85 35.00 0.7919 → 0.0029

ANFIS (m = 25, σ = 10)-SMOTE 99.51 30.26 0.9625 → 0.0089

works such as probabilistic neural network [14] and statistical techniques such
as hypothesis testing [10]. Many different kinds of neural networks have been
developed recently for use in fault diagnosis and could be referred to [15,16].

6 Conclusion

Many different research works present the success stories behind the application
of various methods to automated fault diagnosis in WSN. The present work fo-
cused on a thorough investigation of the possible modification to fuzzy inference
based investigation scheme using kernelized feature space. The achieved results
suggested that the application of such a scheme might not be suitable for the
problem under consideration because of the fact that it makes the inference en-
gine highly specialized towards the training distribution and makes the machine
weak in generalization which is the most important aspect of learning machines.
On the basis of the obtained results, one could further study in the following
possible directions.

Our primary results show that ANFIS with SMOTE without the RBF ker-
nelization outperforms ANFIS during training. However, it has identical results
in testing. This leaves us with a question to investigate while using other learn-
ing machines. Specifically, we should be interested in using oversampling for
rule-generators such as decision tree and random forest classifiers. It could be



hypothesized that an oversampling engine would generate missing information
for the sensor dataset and could make it complete. Then a decision tree can be
used to learn the set of rules for the input-output transformation. Further, such
a model is not computationally expensive unlike sophisticated models like neural
networks.

The results achieved due to the kernel trick in the ANFIS (and ANFIS with
SMOTE) is worse than its non-kernelized counterpart because of poor gener-
alization of the underlying learning machine. A straightforward question to in-
vestigate in future is to study the use of support vector machines (SVM) with
kernel trick for automated classification of sensor faults. As discussed in the
aforementioned point, such a method would also be computationally inexpen-
sive as compared with various neural networks.

Furthermore, failures in sensor networks might occur in both sensor nodes
and the links. It might be arguably correct to say that failures in linked sen-
sor nodes would cause link failure. But, for instance, the primary focus is that
such failures lead to the formation of islands or cuts in sensor networks. Earlier
studies have successfully used simple graph theoretic approaches such as [17] for
detection of cuts in WSN. Sometimes third party intrusion might cause such
failures in the network. So, in such circumstances, a robust model must be de-
signed for automated diagnosis of failures that would not only detect failures
but also decide whether the failure was caused due to environmental damages
or third party intrusion [18,19,20]. To the best of our knowledge, such a model
that would deal with both these kinds of decisions has not been built.
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