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Dynamic Stability of Laminated Composite Curved Panels
with Cutouts

S. K. Sahu! and P. K. Datta?

Abstract: The present investigation deals with the dynamic stability behavior of laminated composite curved panels with cutouts
subjected to in-plane static and periodic compressive loads, analyzed using the finite element method. A generalized shear deformab
Sanders’ theory with tracers is used in this study. Numerical results obtained for vibration and buckling of composite panels with cutouts
compare well with literature. The principal dynamic instability region of composite perforated panels is obtained using Bolotin's ap-
proach. The study reveals that curved panels with cutouts depict higher stiffness with the addition of curvatures. The laminated hyperboli
paraboloid panel shows the highest stiffness with the onset of instability at higher excitation frequencies. The effect of curvature in
laminated composite curved panels is reduced with an increase in size of the cutout. The principal instability regions are influenced by th
lamination parameters. Thus, the laminate construction, coupled with cutout geometry, can be used to the advantages of tailoring durin
design of composite structures for practical applications.
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Introduction gento and Scott 1993; Ng et al. 1998ave studied the dynamic
stability of closed cylindrical shells with simply supported bound-
Plate and shell structures are used in a multitude of thin-walled ary conditions, using an analytical approach. The dynamic insta-
lightweight load bearing structural parts for various modern aero- bility of conical shells is studied by Ganapathi et @999 using
space, offshore, nuclear, automative, and civil engineering struc-a generalized differential quadrature method. The study of the
tures. Cutouts are inevitable in structures mainly for practical parametric instability behavior of laminated composite curved
considerations. Cutouts are commonly used as access ports fopanels is sparsely treated in the literature. The dynamic stability
mechanical and electrical systems, damage inspection, alteringeesults on uniform loaded cylindrical panels are presented by Ga-
the resonant frequency of the structures, and to serve as doors andapathi et al(1994. The parametric resonance characteristics of
windows. This wide range of practical applications demands a laminated composite shells subjected to nonuniform loading are
fundamental understanding of vibration, buckling, and dynamic studied by Sahu and Datfa20014.
stability characteristics. In contrast to transverse loads, panels Previous investigations involving cutouts are mainly confined
with cutouts often lose stability at fairly low stress levels. Struc- to free vibration and buckling of composite plates. Rajamani and
tures under in-plane periodic forces may undergo unstable trans-Prabhakarari1977a,b have assumed the effect of the cutouts as
verse vibrations, leading to parametric resonance, due to certainequivalent to an external loading on the plate and investigated the
combinations of the values of load parameters and natural fre-dynamic response of thin, simply supported, and clamped lami-
quency of transverse vibration. Thus, the dynamic stability of nates with circular or square cutouts. Lee et(2087 have pre-
structures with cutouts is of great technical importance for under- dicted the natural frequencies of composite rectangular plates
standing the behavior of dynamic systems under periodic loads. with cutouts, neglecting shear deformations and rotary inertia.
Despite the practical importance of these structures, the num-Reddy(1982 has investigated the linear and nonlinear free vibra-
ber of technical papers and reports dealing with the subjects aretion frequencies of isotropic, orthotropic, and laminated compos-
limited due to the Complexity involved. An extensive bibliogra- ite p|ates neg|ecting rotary inertia. Lee and L‘im’gga have pre-
phy of earlier works on dynamic stability is given in review pa- sented the natural frequencies of isotropic and orthotropic plates
pers (Evan-iwanowski 1965; Ibrahim 1978; Simitses 1887 jth rectangular cutouts subjected to in-plane forces using Ray-
through 1987. Most of the investigatof€ederbaum 1992; Ar-  |ejgh's method. The effects of shear deformation and rotary iner-
tia are discussed in the study by Lee et@992 on natural
IAssistant Professor, Dept. of Civil Engineering, National Institute of frequencies of rectangular composite plates with cutouts. The ef-

Technology, Rourkela, India. fects of square cutouts on the natural frequencies and mode
Professor, Dept. of Aerospace Engineering, Indian Institute of shapes of cross ply laminates are studied by Jenq ¢1993
Technology, Kharagpur, India. E-mail: pkdatta@aero.iitkgp.ernet.in experimentally and using the finite element metkBEM). Siva-

Note. Associate Editor: Dewey H. Hodges. Discussion open until kumar et al.(1999 have investigated the free vibration of com-
April 1, 2004. Separate discussions must be submitted for individual { 9 9

) : osite plates in the presence of cutouts undergoing large ampli-
papers. To extend the closing date by one month, a written request musf d illati . Ritz fini | del. Ch |
be filed with the ASCE Managing Editor. The manuscript for this paper ude oscillations using a Ritz finite element model. en etal.

was submitted for review and possible publication on March 12, 2002; (2000 have studied the free vibration of symmetrically laminated
approved on April 23, 2003. This paper is part of theurnal of Engi- thick doubly connected plates.
neering Mechanics\Vol. 129, No. 11, November 1, 2003.. Nemeth(1988 has predicted the buckling of rectangular, sym-
metrically laminated angle-ply plates with central circular holes
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using the FEM and experimental results. Lin and KU®89
have studied the buckling of rectangular composite laminates
with circular holes under in-plane static loading. The optimum
design of the cutouts in laminated composite structures is at-
tempted by Vellaichamy et ak1990 using the finite element
method. Srivatsa and Muri§1992 have studied critical buckling
loads of laminated fiber reinforced plastic thin square panels
using FEM, based on classical lamination theory. Neniz896

has presented a review of works on buckling and postbuckling
behavior of rectangular composite plates with cutouts (k298

has investigated the anomalous buckling characteristics of lami-
nated metal-matrix composite plates with central square holes
using the structural performance and resizi8PAR finite ele-
ment program. The free and forced vibration of isotropic and
laminated composite shells with cutouts are studied by Chakra-
vorty et al. (1998 employing finite element methods. The influ-
ence of the cutout diameter and shape upon the buckling of squaré:

ig. 1. Geometry and coordinate systems of curved panel with

carbon fiber reinforced plastic€C FRP panels is studied by utout
Bailey and Wood(1996 using theANSY Sfinite element code.
The behavior of curved panels with cutouts subjected to in-plane ONy 9Ny, 1 1 1)0Myy Qy Qy \
periodic loads, however, is less understood. Recently, the dy- ax oy 2 2<R__ R) ay ClR +C1
namic stability of isotropic curved panel with geometrical discon- Y 924 29
tinuity was investigated by Sahu and Da{2002. The results =P,— X
indicate that the excitation frequency increases with the introduc- at? at?
tion of curvature from flat to curved panels with cutouts. How- Ny, 9Ny 1 1 1) 0Myy Qy Qx
ever, the hyperbolic paraboloid with cutout shows similar insta- X 6y t3C R, R, ax +C1R_y+C1§
bility behavior as that of a flat panel with no stiffness being added 02 920
due to the curvature of the panel with cutout. The effect of cur- = P17+ Pz'—zy
vature on instability regions is reduced for curved panels with an at at
increase in size of the cutout. aQy 9Qy Ny Ny Ny 082w Oazw
The studies on dynamic stability of laminated composite ax 9y Ry R—y—ZR—XerNX Ix2 TNy ay?2
curved panels with cutouts are not available in the literature. Such 92w
studies would shed light on the effect of anisotropy when predict- —p,—
ing the widths of the dynamic instability regi@BIR) for curved at?
panels with cutouts. Besides this, the studies involving stability of My IMyy 920, 92u
curved panels with cutouts are difficult due to nonuniform in- ax + ay —Qx=P3 o2 +P2F
plane stress distribution which alters the stresses, frequencies of
vibration, buckling load, and dynamic instability regions. The dy- ‘9M_xy n %—Q _ ﬂ 4p a_zu
namic stability of composite curved panels with cutouts is studied X ay U3 2 212 )
in the present investigation. The effects of size of cutout, ply ()

orientation, static and dynamic load factors, curvature, geometry, whereN,, Ny, andN,,=in-plane stress resultantsl,, M, and
Xy "X 1 yo

and various boundary conditions on the instability behavior of M, —moment resultants an@,, Q, =transverse shear stress re-
laminated composite curved panels with cutouts are investigated. sultants ooy

Z

(PL.P2P) > | (p(12.22)dz @

. = Zk-1
Theory and Formulations .
where n=number of layers of composite curved panel;

(p)k=mass density of,, layer; andz,=distance ok, layer from

A laminated composite curved panel with cutout subjected to midplane.

uniaxial in-plane periodic loads is considered with the coordinates  The constant®,, R,, andR,, identify the radii of curvature

X, y along the in-plane directions armhlong thickness direction  in the x andy directions and the radius of twisE; andC, are

as shown in Fig. 1. tracers by which the analysis can be carried out by shear deform-
able version of the theories of Sanders, Love, and Donnells. If
C,=C,=1, the equation corresponds to Sanders’ theory. For the

] ) caseC,;=1, C,=0 the equation reduces to Love’s theory. For
Governing Equations C,=C,=0, the equation corresponds to Donnell’s theory.

The governing differential equations of equilibrium for free vibra-
tion of a shear deformable doubly curved panel subjected to ex-
ternal in-plane loading can be expressed (&handrasekhara  The equation of motion for a laminated composite curved panel
1989; Leissa and Qatu 1991 with a cutout under in-plane loads can be expressed as

Dynamic Stability Studies
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[MKa}+[[Ke]=N([Kg]{a}=0 ®) {e}={e}+{en} 9)

Here, [K¢], [Ky], and [M]=global elastic stiffness, geometric ~The linear strain displacement relations dfahu and Datta

stiffness, and mass matrices, respectivdlft) and g=load pa- 2001b
rameter and displacement, respectively. The in-plane loads can be U w
periodic and may be expressed as Ex= 5y + R_+ZKX
X
N(t)=Ng+ N, cosQt (4) )

) ) ) ) v W
whereNg=static portion ofN(t). N,=amplitude of the dynamic 8Y|:W + =N +2zxy
portion of N(t) and Q=frequency of excitation. The stability y
analysis of the composite curved panels is performed expressing ou  Jdv 2w
the periodic load in terms of the linear static buckling ld&g as Y=gy ot R_XerZKXV (10)

N(t) =aNg+ BN cosQt (5) W u v
where a,B=termed as static and dynamic load factors, respec- VXZ:&JFGX_ClR_X_ ClR_Xy
tively. Using Eq.(5), the equation of motion is obtained as 5

w v u
[MHKa}+[[Kel —aNe[Kg]=BNe[ Kg] cost]{g}=0 (6) Vyz:WHy—ClR—y— ClR_Xy

Eg. (6)=Mathieu type equation, describing the instability behav- \yhere the bending straing are expressed as
ior of the composite curved panel with a cutout. The dynamic '

instability regions(DIR) are determinedBolotin 1964 from the _90x a8y

boundaries of instability, which represent the periodic solution of X7 x Ky*W

Periods T and 2T where T=2#/(). The dynamic instability 11)

boundaries of Period R are of practical significancéBolotin K :a_ex ﬂ+3 (i_ i (a_v_ a_u)

1964). To obtain points on the boundaries of the dynamic insta- Yooy oax 2 AR, Ry/lax ay

bility region (DIR), the componentg are written in Fourier series andC, andC,=tracers by which the analysis can be reduced to

as that of shear deformable theories of Love and Donnell. The ele-

® KOt KOt ment geometric stiffness matrix for the curved panel is derived

q=k ;35 {ak}sinTnL{bk}cosT (7) using the nonlinear in-plane Green’s strains with curvature com-

ponent as per Sanders’ nonlinear theory of shells.

These expressions are substituted into (Band the coefficients The nonlinear strain components are as follows:

of each sine and cosine terms are set equal to zero. The determi- 1/9u\2 1/9v\2 1/ow u\2
nants are infinite and belong to a class of converging determi- exn=sl =] tsl=| t5|— =
! . - 2\ ax 2\ ax 219x Ry
nants. The first term solutions are sufficiently accurate for all 1 7113002 [36.)\2
practical purposes$Bolotin 1964. For nontrivial solutions, the + 272 _X) (_V)
determinants of the coefficients of these groups of equations are ) 2 Ly ax X ]
equal to zero. The equation becomes _1fou N 1(ov N llow v
1 Y niT21ay) T2\ay] T2lay R, 12)
[ 2 2
[Kel=aNe{Kgl=5 BNe[Kgl— - [M]|{g}=0  (8) L2972y
27|\ ay ay
This leads to the generalized eigenvalue problem of the systems. au{au v [ dv ow  u\/ow v
For a given value ofx the variation of the eigenvalugd with Yxynl= 7 ay + ax | ay + x RJ\ay R,
.. . X y
respect toB can be found out. The plot of such variation in the
: - . , , . 90, (00,\ (a6, [36,
B—Q plane shows the instability region associated with the lami- + 22 ax )y + ax )y

nated composite curved panel with a cutout subjected to harmoni-
cally excited in-plane load.
Constitutive Relations

Finite Element Formulation . . .
A finite element analysis is performed using a eight-noded iso- The laminated curved panel is considered to be composed of

parametric shell element which can accommodate laminated ma-COMposite material laminagypically thin layers. The material

terials and transverse shear deformations. The element has fiv@f €ach lamina consists of parallel, continuous fibers embedded in
degrees of freedomu(v,w,6,,8,) per node, and based on first- @ matrix ma_terial. Each layer may be regard_ed ona rr_1acroscopic
order shear deformation theory, wharev, w are the displace- scale as being homogeneous and orthotropic. Assuming constant

ment components i, y, andz directions and,, 0, are rota- stress through the lamina, the stress resultants are related to the
tions. g midplane strains and curvatures for a laminated shell element as
N[ A B O (e

Strain Displacement Relations
Green-Lagrange’s strain displacement is used throughout the Mit =B Dij 0 Ki (13)
structural analysis. Assuming that the material response is linear, Qi 0 0 §;]\¥m

the linear part of the strain is used to derive the elastic stiffness

matrix and the nonlinear part of the strain is used to derive the

geometrical stiffness matrix. {F}=[D}e} (14)
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The extensional, bending-stretching coupling and bending stiff-
nesses are expressed as

n
[ G—
(Aj Bjj ,Di;):E f (Qik(1z,z25)dz 1,j=1,2,6
k=1 Jz4
(15)
The transverse shear stiffness is expressed as

n
Zy N
S;=> k(Qdz i,j=45
k=1 Jz

)

(16)

wherek =transverse shear correction factor.
The above off-axis stiffness values are

Q1= Q1M*+2(Q1o+ 2Qge) M2N2+ Q,on*
Q1= (Qu1+ Qo 4Qg 2%+ Qi m*+n)
Q22= Quin*+2(Qy+ 2Qge) M2n2+ Qm*
Q16= (Qu1~ Q12— 2QeeNM*+ (Q1~ Qo+ 2Qee)N*M
Qz6= (Q11~ Q12— 2Qge MNP+ (Q1,—~ Qo 2Qegmn

Qes=(Q11+ Qzo— 2Q1,— 2Qee) M+ Qge( N+ m*)

17)

The elastic constant matrix corresponding to transverse shear de-

formation is
Qua=G1am?+ Gogn?
Q45=(G13—Gyzmn

Qss=G13n?+ Gogm?

(18)

wherem=cosf andn=sin6; andd=angle between the arbitrary
principal axes with the material axes in a layer. The on-axis stiff-
nesses are

Eqn
Qu= (L=vywoy)

Eivor
Quz= (1-vyv29)

Eovio

Q21= A viwa) (19)

Ez
Q2z= (L=vywoy)

Q6= G12
Element Elastic Stiffness Matrix
1 1
[Kele= JllJil[B]T[D][B]JdEdn (20)

where [B]=strain-displacement matrixiD]=elasticity matrix;

and J=Jacobian. Reduced integration technique is adopted toin-plane_stress resultants, NS, _
avoid possible shear locking. Consistent element mass matrix isare obtained separately by a plane stress analysis and the geomet-

expressed as
1 1
[m]e= J B f  [NTTPIINIddn (21)

where[N]=shape function matrix and

P, 0 0 P, O
0 P, 0O 0 P,
[P]I=] O 0O P; O O (22)
P, 0 0 P; O
0 P, 0 0 P;
and
n 7
(Pl,Pz.P3)=2f (p)(12,22)dz (23)
k=1 Jz 4

Geometric Stiffness Matrix
Using the nonlinear strains, the strain energy can be written as

2

U hoau)2 av\? [(ow u)\? of [8U
2= AE Oy & + & + &—R—X +0'y W
60)2 ow v \? 9.0 au au (av v (aw
+W +W_R_y +Txy a_XWJ’_a_XW_{—a_X
upfaw_ vl g h3[ o[ [96,\2 [06y)2
TR\ ay R YT 230 1ax ) Tlax
00,\2 [06,)2 a0, 90
o] Y X 0| Yy
oy (ay) +(ay) }+27XV[(8X 8y)
99 99« dx d 24
+ X ay )| |9*dy (24)
This can also be expressed as
1
Uz=§f[f]T[S][f]dv (25)
where
o Jdu du dv dv (IW U Iw
{}7 55@!&1@5 ax_R_Xi W
_L),a_ex,@,"’_"vﬁ_eﬂ (26)
Ry/"ax ' ay ' ax " ay
and
s 0 0 0O
0 s 0 0O
[S]=| 0 0 s O O 27
0 00 s O
0 0 0 0 s
where
=] 7 ] N N (28)
- Tgy (’3 h Ngy NS

Since the stress distribution is not uniform due to the cutout, the
and Ngy, at each Gauss point
ric stiffness matrix is formed with the stress resultants.

{f1=[GN{3¢} (29)
where

{det=[uvwo,6,]" (30)
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Table 1. Convergence of Nondimensional Fundamental Frequencies The nondimensional excitation frequency parameters are defined

of Simply Supported Square Plate with Cutout SizeH=0.5 as
Mesh Nondimensional frequencies 0=0a2 N
division Isotropic Orthotropic Composite — L . .
where()=excitation frequency in radians/second.
8x8 23.570 51.0597 48.2535
12x12 23.4703 50.7899 48.0650
16x16 23.4364 50.6944 48.0222 Convergence Study
2020 23.4218 °0.6505 48.0064 Convergence studies are made for nondimensional fundamental
Reddy(1982 (23.489 (51.233 (48419 frequencies of vibration of the simply supporté8SS$ square
Note: a/b=1, b/h=100. Nondimensional  frequency, A laminated composite plate with a square hole of size ret@
=wa?\(ph/Dyy). =0.5. As shown in Table 1, the frequencies of vibration are com-
puted for different mesh sizes and the results are compared with
the free vibration study on isotropic, orthotropic, and composite
The strain energy becomes flat panels by Reddy1982. The fundamental frequencies of vi-
1 1 bration gradually decrease with an increase of mesh size from
U2=§f{Be}T[G]T[S][G]{Be}dv= E{BE}T[kg]e{Be} 8X8 to 20x20 and tend to converge at a mesh size 0k 20.
v The frequencies based on present formulation are comparatively
(31) lower to the results by Reddyt982), in which the effect of rotary
where the element geometric stiffness matrix inertia is neglected. Based on the convergence studies, a mesh of
1 r1 20x20 is employed to idealize the full panels with cutouts in the
[kg]e:j f [G]T[S][G]d&dm (32) subsequent dynamic stability studies.
-1J -1

The overall matricegK.], [K4], and[M] are obtained by assem-
bling the corresponding element matrices using the skyline tech-
nique. The accuracy and efficiency of the present formulation are estab-
lished through comparison of frequency parameters of isotropic,
orthotropic and composite platé8°/90° lamination with differ-
Results and Discussions ent thickness ratios and modes of vibration with the finite element
results of Reddy1982, as shown in Table 2. The present results
The results are presented for a laminated composite flat andare in good agreement with the results by Red#i982. For
curved panels with different combinations of boundary condi- verifying the accuracy of the present finite element solutions, the
tions. Shells of various geometries such as cylindrida}/R buckling load of a laminated composite plate with cutout are
=0), spherical R,/R,=1), and hyperbolic paraboloidal shells solved to compare with the results by Ki998, using the struc-
(R,/Ry=—1) are studiedS C, andF denote a simply supported, tural performance and resizingPAR) finite element program.

Comparison with Previous Studies

clamped, and free edges, respectively. The notafi@SFiden- Good agreement exists between the present finite element results
tifies a panel with the edges=0, y=0, x=a, andy=b having with the literature as shown in Table 3. After validating the free
the boundary conditions in that order. The boundary conditions Vibration and buckling results of the laminated composite panel
are described as follows: with a cutout, the investigation is then extended for the dynamic
1. Simply supported boundary instability studies.

S u=w=0,=0 atx=0,a andv=w=0,=0 at
Dynamic Stability Studies
y=0, b; and
2. Clamped boundary Numerical results are presented for dynamic stability studies on
' laminated composite curved panels with cutouts. All of the lami-

C: u=v=w=0,=0,=0 atx=0, a andy=0, b. nae are assumed to be of the same thickness and made of ortho-

Table 2. Comparison of Nondimensional Fundamental Frequencies of Simply Supported Square Plate with Cutout/8ize &

Isotropic Orthotropic Composite
a’h N N3 A1 N3 N N3
10 22.730 59.754 42.380 82.865 43.320 96.786
(22.809 (60.205 (42.693 (83.45) (43.729 (97.379
20 23.188 67.409 47.592 98.643 46.578 126.614
(23.240 (68.391 (47.939 (100.10 (46.971 (128.56
25 23.262 68.878 48.543 101.718 47.074 133.441
(23.309 (70.032 (48.907 (103.43 (47.469 (135.85
100 23.476 73.024 50.802 109.281 48.076 152.355
(23.489 (75.076 (51.232 (112.22 (48.419 (156.85

Note: Results in bracket are from Redth982. D,,= E,-h/12(1— v1,v,1). Nondimensional frequency,=wa?\(ph/D,,).
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Table 3. Comparison of Buckling Loadsl, in Ib/in. of Square Simply Supported Panel with Cutout wWi@i®/0/0/90, Lamination

Buckling load in Ib/in.

Reference c/a=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Present 50.0166 47.8651 43.5676 40.2852 38.2599 36.9991 36.1332 35.7044
Ko (1998 49.2286 46.9455 42.8393 39.6854 37.7255 36.4901 35.6396 35.2243

Note:a=b=20in., h=0.064in.E, =27.72x 10° Ib/in.?, E;=18.09x 1(° Ib/in.2, G, +=8.15x 1¢° Ib/in.2, v, +=0.3.

tropic material. The material properties considered here are ofof load on the instability regions of the plate with a cutout of size
typical titanium metal matrix composite and are as follows: c/a=0.5 is studied forx=0.0, 0.2, and 0.4, as shown in Fig. 3.
E =191.13 GPa(27.72<10° Iblin2), D_qe to an increase of t_:ompressive static i_n-plane load, the i_nsta-
bility regions tend to shift to lower frequencies and become wider.
E;=124.73 GPa(18.09x10° Ib/in.?), Further investigations are done with a static load factor of 0.2
_ i B (unless otherwise mentiongdStudies have also been made for
G 71=56.19 GPa(8.15<1C° Ib/in.?), v 7=03 comparison of instability regions for different shell geometries
The dynamic instability regionéDIR) are plotted for a flat and ~ with the introduction of curvature. The dynamic instability re-
cylindrical composite panel with/without static component to con- gions are plotted for plate and different curved panels such as
sider the effects of static load factor, size of cutout, different panel cylindrical (b/R,=0.25), sphericald¢/R,=b/R,=0.25), and hy-
geometries, and boundary conditions. The computed buckling perbolic paraboloidsa/R,= —0.25,b/R,=0.25) with cutouts of
load of the simply supported composite panel with dimensions ¢/a=0.5 and are compared in Fig. 4. It is observed that the ex-

a=b=500mm, h=2mm, and lamination propertie§45°/ citation frequency increases with an introduction of curvature
—45°/—45°/45%, is taken as the reference load for all further from laminated composite flat panels to curved panels with cut-
computations in line with Moorthy et a{1990. outs. The excitation frequency is higher for the cylindrical panel

The effects of the size of the cutout on the instability region of to that of a flat panel and still increases for a spherical panel with
a flat panel are studied from/a=0.0 (no cutouj to 0.8 at an curvature. The onset of instability occurs later for hyperbolic pa-
interval of 0.1. However, for clarity, the plots are shown for size raboloid with narrow instability regions unlike the isotropic cases.
of a cutoutc/a=0.0 (no cutouj to 0.8 at an interval of 0.2 and  Fig. 5 shows the influence of different boundari€SSS, SCSC,
c/a=0.5. The variations of the instability region versus dynamic CSCS, CCCCon the principal instability regions. As expected,
in-plane load is shown in Fig. 2. It can be observed that the onsetthe instability occurs at a higher excitation frequency from simply
of instability occurs with lower excitation frequencies for small supported to clamped edges due to the restraint at the edges. The
cutouts in simply supported plates up ¢ba=0.2. With an in- laminated cylindrical panels with clamped straight edges and sim-
crease of the cutout size, the onset of excitation frequency in- ply supported curved boundaries show higher excitation frequen-
creases along with wider dynamic instability regions. The onset of cies with narrow instability regions than panels with clamped
instability occurs with higher excitation frequency for plates with curved edges and simply supported straight edges. The effect of
a cutout size ofc/a=0.4 onward than that of plate without a Size of the cutout on instability regions of a simply supported
cutout (¢/a=0.0). The onset of instability occurs at higher exci- cylindrical panel is investigated far/a=0.0, 0.2, 0.4, 0.5, 0.6,
tation frequencies up to plate with a cutout ofa=0.8 with and 0.8. In Fig. 6, as expected, the onset of instability occurs later
wider instability regions. This may be attributed to the reduction for cylindrical panels to that of a flat plate with cutout. The onset
of mass and predominance of the boundary restraints over theof instability occurs earlier with an increase of size of the cutout
entire plate. The results show that the dynamic instability behav- up toc/a=0.6. This may be due to the effect of curvature gradu-
ior for composite curved panels with geometrical discontinuity is ally reducing the effect due to an increase in size of the cutout.
more pronounced in comparison to the corresponding isotropic With further increase of cutout sizee/a=0.8), the excitation
casegSahu and Datta 2002The effect of the static component

0.6
0.8
0.7 o~ 0.5
s <
T o6 £ o4
S 05 c/e e
b O gg S 0.3
| B -
_8 0.4 v 04 o
* 05 =
€ 03 + 08 § 02
o A 08 g
(=
3 0.2 S g4
0.1
0.0 0.0
) 5 7 11 1
o] 10 20 30 40 50 9 3 15 17 19

Nondi . -
Nondimensional excitation frequency(Q) ondimensionol excitation frequency(Q)

Fig. 2. Effect of size of cutout on instability region of simply sup- Fig. 3. Effect of static load factor on instability region of simply
ported plate forc/a=0, 0.2, 0.4, 0.5, 0.6, and 0.8/R,=0, b/R, supported plate with cutouta/b=1, a/R,=0.0, b/R,=0.0, c/a
=0.0,a=0.0 =0.5 fora=0.0, 0.2, and 0.4
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Conclusion
frequency suddenly increases having wider dynamic instability
regions. The onset of instability occurs with a higher excitation The dynamic stability of laminated composite curved panels with
frequency for the cylindrical panel with a cutout sizea=0.8 cutouts is investigated using the finite element method. Based on
than that withc/a=0.6 with very wide DIR. This is due to the  the parametric studies, the conclusions are
fact that the curved panels with a higher size of a cutout behaves1. The excitation frequency decreases with the introduction of a
as a plate and the excitation frequency increases. The onset of  cutout in laminated composite flat panels. With a further in-

instability will even occur earlier for a cylindrical panel with a crease of size of the cutout, the onset of instability occurs
cutout size ofc/a=0.8 for a higher value of dynamic load be- later but with wider instability regions. This may be due to
yond B=0.7. The effect of ply orientation on instability of the reduction of mass and predominance of boundary restraints
eight layer symmetric angle-ply curved panels with a cutout size at the edges.

of c/a=0.5 is studied as shown in Fig. 7. The onset of instability 2. The onset of instability occurs later for a composite curved
is influenced by ply orientations. The onset of instability occurs panel by introducing curvatures. The laminated hyperbolic
earlier for a ply orientation of 0, 15, and 30°. The onset of insta- paraboloid shows highest excitation frequencies out of all
bility occurs later for 45, 60, 75, and 90° orientations. The curved geometries considered.

panel with a cutout shows a preferential ply orientation of 60° for 3. Instability occurs earlier with an increase of the static com-
this size of cutout. The instability occurs for the laminated curved pressive in-plane load with wider dynamic instability regions
panel with fibers parallel to loading than in perpendicular direc- for the composite curved panels with cutouts.

tion. Fig. 8 shows the variations in the dynamic instability region 4. For any laminated cylindrical panel, the excitation frequency
of curved panels with a cutout sizéa=0.5 for two layups. The reduces with increasing cutout size. With an increase of size
onset of instability occurs earlier for a two layer angle ply layup of the cutout, the effect of curvature is reduced for which the
(45°/-45°) than the eight layer symmetric angle p[y5°/ onset of instability occurs earlier. On further increase of the
—45°/—45°/45°],. This may be due to the effect of bending cutout, the effect of curvature is reduced and the curved
stretching coupling for the case of laminates. panel behaves like a flat panel and the excitation frequency

increases drastically.
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