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o Let X(l) < X(g) < ... < X(T) (2 <r< m) and Y(l) < Y(g) <
< Y (2 £ 5 < n) be the r and s number of ordered
observations taken from two random samples of sizes 7:(> 2) and
n(> 2), which follow exponential distributions with a common
scale parameter o and different location parameters 1i; and fi
respectively.
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o Let X(l) < X(g) < ... < X(T) (2 <r< m) and Y(l) < Y(g) <
< Y (2 £ 5 < n) be the r and s number of ordered
observations taken from two random samples of sizes 7:(> 2) and
n(> 2), which follow exponential distributions with a common
scale parameter o and different location parameters 1i; and fi
respectively.

@ Since /i;s denote the minimum guarantee time, we assume ji; >
0;i=1,2.

[m] = =
(NITR)  Co-authored by Adarsha Kumar Jena(NITR)

it
9
¢



o Let X(l) < X(g) < ... < X(T) (2 <r< m) and Y(l) < Y(g) <
< Y (2 £ 5 < n) be the r and s number of ordered
observations taken from two random samples of sizes 7:(> 2) and
n(> 2), which follow exponential distributions with a common
scale parameter o and different location parameters 1i; and 1
respectively.

@ Since /i;s denote the minimum guarantee time, we assume /; >
0;i=1,2.
@ The problem is to estimate the p'" quantile 0; = 11, + no of ith

population, where 0 < 7 = —log(1 — p); 0 < p < 1. The loss
function is taken as

L(d, i, iz, ) = (1)
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@ Let us consider a practical situation where our model fit well.
Suppose a product/an equipment is produced from two differ-
ent manufacturers, say M; and M. Let the life times of these
products follow exponential distribution. Assume that both the
manufactures employ modern statistical technique so that their
variations will be minimized.
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Int

@ Let us consider a practical situation where our model fit well.
Suppose a product/an equipment is produced from two differ-
ent manufacturers, say M; and M. Let the life times of these
products follow exponential distribution. Assume that both the
manufactures employ modern statistical technique so that their
variations will be minimized.

@ Depending upon their technology development and the target level
the minimum guarantee period or the mean life times of one man-
ufacture will be less or more than the other. Under such a scenario
it is quite practical to assume that the scale parameters are equal
and location parameters are ordered.
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@ The application of exponential quantiles have been seen in the
study of reliability, life testing and survival analysis and some re-
lated areas. For some practical application of exponential quan-
tiles we refer to Epstein (1962), Epstein and Sobel (1954) and
Saleh (1981).
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@ The application of exponential quantiles have been seen in the
study of reliability, life testing and survival analysis and some re-
lated areas. For some practical application of exponential quan-
tiles we refer to Epstein (1962), Epstein and Sobel (1954) and
Saleh (1981).

@ For a quick review on estimation of parameters of exponential
population with applications, using some conventional censoring
schemes we refer to Lawless(2003) and Johnson et al. (2004).
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attention has been paid in this direction.

@ When two or more exponential populations are available a little
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@ When two or more exponential populations are available a little
attention has been paid in this direction.

@ Yike and Heliang (1999) have focused on the Bayesian estimation
of ordered location parameters of two shifted exponential distri-

butions using multiple type-ll censoring scheme. But they have
assumed that scale parameters are known.
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@ When two or more exponential populations are available a little
attention has been paid in this direction.

@ Yike and Heliang (1999) have focused on the Bayesian estimation
of ordered location parameters of two shifted exponential distri-
butions using multiple type-Il censoring scheme. But they have
assumed that scale parameters are known.

@ Tripathy (2015) and Elfessi and Pal (1991) considered the esti-
mation of common scale/location using type-I| censored samples.
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@ When two or more exponential populations are available a little
attention has been paid in this direction.

@ Yike and Heliang (1999) have focused on the Bayesian estimation
of ordered location parameters of two shifted exponential distri-
butions using multiple type-Il censoring scheme. But they have
assumed that scale parameters are known.

@ Tripathy (2015) and Elfessi and Pal (1991) considered the esti-
mation of common scale/location using type-I| censored samples.
@ In fact the model we considered in this study is same as that of

Elfessi and Pal (1991).
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e Madi and Leonard (1996) have considered several shifted expo-
nential populations with different location parameters. For their
model they have taken scale parameters are equal. that is o is the
common scale parameter. They have found Bayesian estimation
of o under quadratic loss function without having restriction on
location parameters.
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@ Define X(l) = minlgjgm X], Yv(l) = minlgjgn Y;, T = T1 + TQ,

r

=1

Ti=) (X; = X@) + (m—r)(X, = X)),

T = Z (Y; = Yiy) + (n = s)(Ys = Yy).
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@ Define X(l) = minlgjgm X], Yv(l) = minlgjgn Y;, T = T1 + TQ,

r

=1

Ti=) (X; = X@) + (m—r)(X, = X)),

T = Z (Y; = Yiy) + (n = s)(Ys = Yy).

o (Xn),Yn),T)is a complete and sufficient statistic.
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@ Define X(l) = minlgjgm X], Yv(l) = minlgjgn Y;, T = T1 + TQ,

r

S

T = Z (X; — X)) + (m =) (X, — Xq1y),

I = Z (¥; — Y(l)) +(n—s)(Ys — Y(l))-
j=1
® (X1, Y1), T) is a complete and sufficient statistic.
o Xy~ Exp(p1,0/m), Yay ~ Exp(ps, o/n) and

T ~G(m+n—2,0). (Elfessi and Pal(1991))
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® The MLEs for /1, 115, and o are X (1), Y(1) and - respectively.
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® The MLEs for /1, 115, and o are X (1), Y(1) and - respectively.
@ The MLEs for ¢y is X (1) + 77% and, for 05 is Y1) + 1

T
r+s”
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® The MLEs for /1, 115, and o are X (1), Y(1) and - respectively.
@ The MLEs for ¢y is X (1) + 77% and, for 05 is Y1) + 1
@ The modified MLE for ¢, is Xy

T
r+s’
_r
m(r+s—2)

—i—n%.
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® The MLEs for /1, 115, and o are X (1), Y(1) and - respectively.
® The MLEs for 6, is X1y + 7, and, for 6, is Y1) + 7.
@ The modified MLE for ¢; is X(;) —

@ The modified MLE for 0 is Y(;) —

m(r+s 2) + nrJrs

n(r-i—s 2) + nr—I—s'
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® The MLEs for /1, 115, and o are X (1), Y(1) and - respectively.
® The MLEs for 6, is X1y + 7, and, for 6, is Y1) + 7.
@ The modified MLE for ¢; is X(;) —

@ The modified MLE for 0 is Y(;) — m + 77T+s-

o The UMVUE for 6, is X1y + ( — L)L

m/ r+s—2

m(r+s 2) + nrJrs
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o The MLEs for /i1, 115, and o are X (1), ¥(1) and respectively.
@ The MLEs for ¢y is X (1) + 77T and, for 0, is Y1) + 1~
@ The modified MLE for ¢; is X(;) —

@ The modified MLE for 0 is Y(;) — m + 77T+s-
o The UMVUE for 6, is X1y + (n — )L

m/ r+s—2

o The UMVUE for 0, is Vi) + (7 — 1)L

r+5—

r+s

T
m(r+s 2) + nm
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o Let G4 = {gup : gap(x) = ax + b,a € RT,b € R} be an affine
group of transformations.
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o Let G4 = {gup : gap(x) = ax + b,a € RT,b € R} be an affine
group of transformations.

@ The form of an affine equivariant estimator for the quantile 6,
based on (X(1),Y(1),T) is
d(X(l), Y(l), T) = X(l) 4+ T.

(2)
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o Let G4 = {gup : gap(x) = ax + b,a € RT,b € R} be an affine
group of transformations.

@ The form of an affine equivariant estimator for the quantile 6,
based on (X(1),Y(1),T) is

d(X(l), Yo, T)= Xy +aT.
1
° X(1) (n—57)

r+s—1

T is the BAEE for 6.

(2)
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o Let G4 = {gup : gap(x) = ax + b,a € RT,b € R} be an affine
group of transformations.

@ The form of an affine equivariant estimator for the quantile 6,
based on (X(1),Y(1),T) is

d(X(l), Yo, T)= Xy +aT.
1
° X(1) (n—57)

(2)
25 1 is the BAEE for 6;.
o Yoy + i

)T is the BAEE for 0.
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@ When there is no order restriction on 6; and 6, let él and éz be
some estimators for #; and 65 respectively.
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@ When there is no order restriction on 6; and 6, let 91 and éQ be
some estimators for #; and 65 respectively.
max (0,

@ But when 0; < 05, we take Oip = min(6;,
’r'él-f—séz)
r+s :

rél +Séz
r+s

) and By =
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@ When there is no order restriction on 6; and 6, let 51 and éQ be
some estimators for #; and 65 respectively.

@ But when 0; < 05, we take Oip = min(él,%) and Oy =

max (0, %).

@ Now for mixed estimator using BAEE, let us take

_1
dy = Xgy+ T, dy = Yoy + 4T, ¢ = i)

1
* (n_ﬁ)
25 and ¢ =

r4+s—1"
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@ When there is no order restriction on 6; and 6, let 51 and éQ be
some estimators for #; and 65 respectively.
@ But when 0; < 05, we take Oip = min(él,%) and Oy =
max(éz, %).
@ Now for mixed estimator using BAEE, let us take
_1 _1
di = Xy + T, dy = Yoy + &T, ¢; = ") and ¢ = U-x)

r4+s—1 r4+s—1°
@ The mixed estimator for 6, is given by

da(C_l) = Oédl + (1 — Oé)dg, (3)

1 ifdy <d
+ o 1 > U2,
for ™ € R, O‘_{a+ if d, > dy.
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minimum risk is given by

@ The values of a™ for which the risk of the mixed estimators have
at =

(G

1
+
o

m+n_

cs(r+s—2)

T mic - C’f)] )
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@ The values of at for which the risk of the mixed estimators have
minimum risk is given by

_m R
at =" {(M iy

g

1

cas(r+s—2
n 2( )
m-+n

4
1+m(c’2‘—c’{)] (4)
o Infat = —oo and Sup ot = = 1

cx(r+s—2)
m+n n + 7 ]

Thm(cs—c})
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@ The values of at for which the risk of the mixed estimators have
minimum risk is given by

—-m — 1 cy(r+s—2
2 o m-+n 1+ m(cs —cf)
o Infat = —oo and Sup ot = = miﬂ—n—k%].
Theorem 1

The mixed estimator d,(d) is inadmissible for a™ > Sup o™ and is
improved by dsypa+ and, is admissible for o™ < Sup a* among the
class of estimators.
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@ The mixed estimator for 65 is given by

do(d) = ady + (1 — a)dy, (5)
0 ifdy <d
+ o 1 =~ W2,
for a™ € R, a—{a+ if dy > dy.
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@ The mixed estimator for 65 is given by
do(d) = ad; + (1 — a)ds,

()
for a™ € R, a:{o

if dl S d27
at

if dy > ds.
@ The values of a™ for which the risks of the mixed estimators have
minimum risk is given by

_Zm_1
o=

cs(r4+s—2
n 2( )
m-+n

1+m@—qﬂ ©)
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o 71 (p1, o) = ¢ for py < po, where ¢ is a constant.
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@ mi(p1, p2) = ¢ for py < po, where c is a constant.
o m(0) =< for o > 0.
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o 71 (p1, o) = ¢ for py < po, where ¢ is a constant.
e my(o) =12 foro > 0.
a

o let us denote the sufficient statistics (X (), Y1), T) as (X,Y,T).
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o 71 (p1, o) = ¢ for py < po, where ¢ is a constant.
e my(o) =1 for o > 0.
g

o let us denote the sufficient statistics (X (), Yn),T) as (X,Y,T).
@ The likelihood function is given by

mnct™ 573
I'(r+s—2)omts

L(.’E, Y, t) = 7é{mm+"y+t*mlﬂ*nu2} (7)
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o 71 (p1, o) = ¢ for py < po, where ¢ is a constant.

o m(0) =< for o > 0.

o let us denote the sufficient statistics (X (), Yn),T) as (X,Y,T).
@ The likelihood function is given by

mnct™ 573

L(z,y,1) =
00 = 54 s — 9o

,%{mm+ny+t7mulfn,u2} (7)

Since > p; and y > po, we get 0 < 1y < min(z,y) and
p1 < po < y. Let us denote t* = min(z,y).
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mnct™ 573

@ The joint posterior density of i, p1o and o is obtained by
g(:ula M2, alZ)

- AT (r + s — 2)ortstl

e
where A= [\" [* [* g(pu1, 2, 0| Z)dodpadyy.

1
—={mz+ny+t—mui—n
A Yy 1 uz}, (8)
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@ The joint posterior density of i, p1o and o is obtained by
mnct™s73
ATl(r 4+ s — 2)gr+st!

where A = f(f* 51 fOoo g(/’l’lv M2, J|Z)d0-dlu’2d,ul

@ The Bayesian estimation of 6, is given by élbs =

g(:ula K2, O-’Z) =

1
—={mz+ny+t—mui—n
A Yy H1 Hz}, (8)

91
E?f: ; where
E(%|z) and E(Z|z) are posterior mean of % and %
respectively.
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@ The joint posterior density of i, p1o and o is obtained by
mnct™s73
e
ATl(r 4+ s — 2)gr+st!

where A = f(f* 51 fOoo g(/"’l? M2, O'|Z)d0'd,l,l/2d,u1

N 1
@ The Bayesian estimation of 6, is given by 01,5 = E"T: ; where

E(%|z) and E(Z|z) are posterior mean of % and %
respectively.

o E(%|z) = E(42) + nE(L]2).

g(p, pe,0|2) =

1
—={mz+ny+t—mui—n
A Yy 1 uz}, (8)
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@ The joint posterior density of i, p1o and o is obtained by

mnct™ 573
— e
ATl(r 4+ s — 2)gr+st!

where A= [\" [* [* g(pu1, 2, 0| Z)dodpadyy.

. L L A E
@ The Bayesian estimation of 6, is given by 0,s = —5—

1
—={mz+ny+t—mui—n
A Yy H1 Mz}, (8)

g(:ul; K2, O-’Z)

E(%|z) and E(Z|z) are posterior mean of % and %
respectively.
° B(%z) = B(42) +nE(;|2).
@ The Bayes estimator of #; under the loss function- (1), for
i =1, is given by
t* 50
fﬂlzo /-3;2=,u1 fazo(% + n%)dad,uzdm
T s
f#lZO 32:“1 fa:O(%)dUdMQd,ul
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@ Denoting £ = mx +t and w = mx + ny + ¢, it is found that
E(’ul ) met™ 30 (r 4+ s+ 1)
—\z) =

o2~ Al'(r+ s —2)

(B1 — By), (10)
_w{w " — (w — (m 4 n)t7) U}
where B; = CEEE ) +
{wl—(r+s) _ (w _ (m + n)t*)l—(r+s)}
(m4+n)2(1—(r+s))

By

I

_ g{g—(r—l—s) _ (5 _ mt*)—(r—i—s)}

m2(r+ s

) +

{51—(7‘-{—5) _ (§ _ mt*)l—(r—i—s)}
m?*(1 = (r +s))

(NITR)
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e Similarly,
1
E(—|z) =
(~l2)

mct™ ™ 30(r + )
(r+s—1AT(r+s—2)

(Dl - DQ);

(11)
(mtn) "

D,

{ 1—(r+s) (w . (m + n)t*)l—(ﬂ-s)};

{61_(T+5) . (& . mt*)l—(r—i—s)}.
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e Similarly,
1
E(—|z) =
(~l2)

mct™ ™ 30(r + )
Dy —D 11
(T+8—1)AP(T+S—2)( ! 2): (11)
where
1
Dy = 1—(r+s) o # 1—(r4s)7.
D2 _ {61_(T+5) . (& . mt*)l—(r—i—s)}.
@ Similarly,
1
E(;E) =
where

met™ 730 (r + )
Al(r 45 —2)

(NITR)
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°
1
B=——
(m+n)
°

{w—(r—i—s) _ (w _ (m +n)t*)—(r+s)}
Ey

{0 — (g —mt) )

I

(NITR)
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°
1
El = w
(m+n)
°

{ —(r+s) _ (w _ (m _}_n)t*)—(r-i-s)}.
Ey

1bs —

e )

@ Hence the Bayesian estimation of 6, is given by

?

(r+8)(B1— By) + (,urz—_l)(Dl — D)
(1 — Ey)

(13)
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o
1
E1:

—(r+s)
R
o

(w — (m+n)t")~C+},
E{g—(r—l—s) . (€ . mt*)—(r—i—s)},

@ Hence the Bayesian estimation of #; is given by

. :(r—l—s)(Bl By) +

r—{—s 1 (Dl
(By —
by

Ds)

. 13
£ )
@ The Bayes estimator of fy under the loss function(1) is obtained

t* Y [e'S)
ézb _ ful—O H2=p1 fcf O(Q
S t*
f#1=0 32 ulf (
(NITR)
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Lo mct™ 30 (r +8) .
E(—=lz) = B —B h 15
(0.2|§) TLAF(?"+S—2) ( 1 2)7 where ( )

nw{w ") — (w— (m +n)t*) "0}
(m +n)?

(m 4 n(r + s + D) '~ — (w — (m 4 m)t)1 =+

(m+n)2(1—(r+s)) '

B = +

By = 220 — (g = mt") )4
{51—(7’—4—5) _ (f _ mt*)l—(r+s)}

m(1l— (r+s))
@ Hence the Bayesian estimation of 92 is given by
L(Br - B; D, —D
O e o (16)
(El E2) o 5 = = E 9Dae
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o m(p, pi2,0) = mi(pun|p2, o) (p2|o) w3(0), where
1

7T1(M1|M2,0) — ge—(uz—ul)/a7 W2(M2|0) — _eg 2/

a ,—f/c
and m3(0) = b7 e

(17)
F(a)m, a>0,8>0.

(18)
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o m(p, pi2,0) = mi(pun|p2, o) (p2|o) w3(0), where
1

7T1(IJJ1|/J270) = ;6_(“2_“1)/07 7T2(M2|U) = —e /7

(17)
ch e—ﬁ/a
and 7T3(O'): F(a)m, OZ>O,,8>O. (18)
@ The joint posterior density of 11, po and o is given by
ﬁamnt'r—i-s—S
g(iula 2, 0-|Z) =

1
N AT (a)[(r 4+ s — 2) grtstat3

e—%{mz+ny+t+ﬂ+(2—n)uz—(m+1)u1},
where A= [0 [V [ g(pn1, i, 0| Z)dodpndyy

(NITR)

(19)
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@ Denotingv=mx+ny+t+pfandu=mx+2y+t+ 05, itis
found that
H1
E(=l2)

mnt" 3B (r + 5+ 3
e T 2)1£(a)(n - g) (b =), (20)
where
B v{v(rHstet2) _(y — (m 4 n — 1))~ UFsted2)] B
e (m4+n—-1>2(r+s+a+2)
{,U—(r-i-s-i-a-i-l) _ (U _ (m +n— 1)t*)(r+s+a+1)}
(m+n—-1>2r+s+a+1)
and
by =

B u{u—(r+s+a+2) _ (u _ (m + 1)t*)—(r+s+a+2)}
(m+1)2(r+s+a+2)

{u—(r+s+a+1) _ (u _ (m + 1)t*)(r+s+a+1)}
(m+1)2%(r+s+a+1).
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e Similarly,
1
E(-lz) =

mnt" 3BT (r + s+ 1)
= di —d 21
AF(T+3—2)F(04)(n—2)( 1= da), (21)
where
1
di = —(r+s+a+1) . — 1) —(r+s+a+1)7.
= e (v = (m+n—1t) }
1
do =
T mrnt

{ —(r+statl) _ (u— (m + 1)t*)—(r+s+a+1)}_

(NITR)
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@ Similarly,
1

E(;|§)

mnt" 3BT (r + s+ 1)
= dy —d 21
AF(r+s—2)F(a)(n—2)( 1= ), (21)
where
1
dj = ——— [y~ rtstatl) _(y — 1)) (rtstat)y.
I e VAL (v = (m+n—1t) -
1
do = —(r+sta+l) _ _ 1)¢* —(r+s+a+1) ‘
= (u= (m+ 1) )
e Similarly,
E(i|z) B mntr-i—s—f’)ﬁar(r_’_s_’_z)
o2'= T AT (r + 5 — 2)0(e)(n — 2
where

) (61 - 62),

(22)
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(]
1
€1 —

(m e 1) {U—(r+s+a+2) _ (U . (m +n— 1)t*)—(7“+s+a+2)};
1
€y = u
T (m+1)

{ —(r4stat2) (u— (m+ 1)t*)7(7“+8+a+2)},

(NITR)
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(]
1
€1 —

(m e 1) {U—(r+s+a+2) _ (U . (m +n— 1)t*)—(7“+s+a+2)};
1
€y = u
T (m+1)

{ —(r4stat2) (u— (m+ 1)t*)7(7“+8+a+2)},
@ Hence, the bayesian estimation of ¢, is given by
élbs

(r+s+a+2)(r+s+a+1)(by—by)+n(ds
(r+s+a+1)(eg —eg)

= d2) (23)

(NITR)
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;’é)

omnt" T (r s+ a4+ 2)
where

ATl (r+s—2)I'(a)(n —2)?

(b7 —b3),  (24)
" {u—(r+s+a+1) _ (U _ (m + l)t*)—(r-i-s—l-a—l-l)}
e (m+n)(r+s+a+1l)

=2y

o { —(r+s+a+2) _ (u _ (m + 1)t*)—(r+s+a+2)};
by =
(n—2)v

(m+n—1)2

(m+n—1)2(r+s+a+1)

{U_(T+s+a+2) _ (’U _ (m In— 1)t*)—(r+s+o¢+2)}'

(m4+14+(n—2) (r+s+a+3)){v=(rTstatl) _(y_(mi4n—1)t*)~(tstat)y o

(NITR)

[m]

=

Co-authored by Adarsha Kumar Jena(NITR)



@ Hence the Bayesian estimation of ¢, is obtained by

(r+s+a+1
N n—2
9268 -

)(b7 — b3) + n(di — da)
(r+s+a+1)(eg —es)
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@ The percentage of relative risk improvent (PRRI) of any estimator
0; w.r.t. the MLE is given by

R =(1

i

— MLE) x 100.
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@ The percentage of relative risk improvent (PRRI) of any estimator
0; w.r.t. the MLE is given by

0i

@ The PRRIs of all the estimators are very negligible except the the
Bayes estimators.
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@ The percentage of relative risk improvent (PRRI) of any estimator
0; w.r.t. the MLE is given by

0i

@ The PRRIs of all the estimators are very negligible except the the
Bayes estimators.

@ The PRRIs are highly dependent on the parameters o and [ than
the number of samples m and n. It may be positive or nega-
tive. However, when the parameters o and /3 are nearer to each
other(a ~ [3), the PRRI is noticeable.
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Table 1: For 0; with n=1.5;a =3.5;8 =3.0; C.F. = (.25,.5,.75,1)

pi/o | pe/o | R(dpa) | R(dr) | R(dam) | R(dct) | R(dpes)
6.419 6.464 6.262 12.042 77.441
0.5 1.0 1.283 1.432 1.270 5.211 56.872
0.000 0.302 0.159 2.717 44 588
0.884 1.334 1.237 3.347 37.930
5.578 5.578 5.578 8.686 88.519
1.0 2.5 1.076 1.076 1.076 1.849 67.965
0.000 0.000 0.000 0.161 52.599
0.595 0.595 0.595 0.578 43.071
6.341 6.341 6.341 8.009 79.809
2.0 3.5 1.082 1.082 1.082 1.522 56.747
0.000 0.000 0.000 0.164 42.164
0.631 0.631 0.631 0.716 35.622
5.906 5.906 5.906 6.994 51.828
2.5 45 1.199 1.199 1.199 1.351 24.412
0.000 0.000 0.000 0.043 15.388
0.445 0.445 0.445 0.462 10.804
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Table 2: For 0y with n =1.5;a = 3.5;8 =3.0; C.F. = (.25,.5,.75,1)

pi/o | pe/o | R(dpa) | R(dr) | R(dam) | R(dct) | R(dpes)
7.0870 7.149 7.267 12.719 77.031
0.5 1.0 1.056 1.116 1.112 4.740 54.778
0.000 0.123 0.150 2.205 41.581
0.710 0.781 0.779 1.892 33.405
5.218 5.218 5.218 8.736 85.504
1.0 2.5 0.963 0.963 0.963 2.245 61.560
0.000 0.000 0.000 0.566 45.233
0.779 0.779 0.779 1.116 35.411
6.372 6.374 6.379 7.949 74.854
2.0 3.5 1.386 1.386 1.386 1.628 50.288
0.000 0.000 0.000 0.037 34.260
0.681 0.681 0.681 0.670 25.079
6.268 6.268 6.268 7.303 44.235
2.5 45 0.928 0.928 0.928 1.046 13.806
0.000 0.000 0.000 0.013 2.098
0.188 0.188 0.188 0.186 0.574
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@ The performance of the BAEE, the mixed estimators and the
restricted BAEE are almost same.
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@ The performance of the BAEE, the mixed estimators and the
restricted BAEE are almost same.

@ The Bayes estimators perform better than other estimators.
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@ The performance of the BAEE, the mixed estimators and the
restricted BAEE are almost same.

@ The Bayes estimators perform better than other estimators.

@ The performance of Bayes estimators decrease as the censoring
factors increase when 111 /0 and j15/0 are nearer to each other.
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@ The performance of the BAEE, the mixed estimators and the
restricted BAEE are almost same.

@ The Bayes estimators perform better than other estimators.

@ The performance of Bayes estimators decrease as the censoring
factors increase when 111 /0 and j15/0 are nearer to each other.

@ When 1, /0 and /0 are far from each other, the performance
of Bayes estimators are not better than the other estimators.
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