Structural, Magnetic and Impedance Spectroscopic Analysis of LaFeO₃ Nano-particles

T. Lakshmana Rao, M.K. Pradhan and S. N. Dash*
Dept. of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha-7690
dsuryanarayan@gmail.com

Abstract: Physical properties are known to be drastically varied with crystallite size and in a multifunctional material this size reduction is seen to be interesting. The average particle size found to be in the order of 45 nm. A distorted orthorhombic structure with Pbnm space group is possessed by this nanoparticle. From the bifurcation of ZFC and FC in low field, behavior of inverse susceptibility and the small hysteresis loop favors the material to be in a weak FM state well below the Neel temperature. The electrical behavior and the conduction mechanism above room temperature have been studied by cole-cole plot of the Impedance spectra. The high frequency depressed semi circles represent the grain conduction while the intermediate frequency semi circles appear may be due to grain boundary effect.

Introduction

- Perovskite rare earth compound oxides such as ABO₃ are very important inorganic functional materials and very interesting physical properties in the area of magnetism and ferroelectricity.
- Lanthanum orthoferrite, LaFeO₃, is one of the most important perovskite type oxides and has been proposed for various applications such as solid oxide fuel cells, catalysts, chemical sensors.
- Anti-ferromagnetic with a Neel temperature Tₙ of 738 K.
- Transition from orthorhombic to rhombohedral at T~ 1260 K.
- 3d electrons are responsible for magnetic ordering which induces lattice distortion.
- Magnetic ordering creates strong local electric field which is responsible for the onset of ferroelectric ordering. It’s at RT multiferroics materials.
- In this work an effort is made to investigate Impedance spectroscopy and magnetic properties of LaFeO₃.

Experimental Details

- For the detailed structure, room temperature Powder X-Ray diffraction (XRD) is performed by Rigaku (Ultima IV) X-Ray diffractometer with Cu-Kα radiation
- The detailed morphology, crystallite size is being measured using FESEM
- For the magnetic measurements of the materials, we have measured temperature dependence magnetization by using vibrating sample magnetometer (ppms-6000).
- Impedance measurement is being carried out using Hioki 3570 impedance. The measurement is repeated several times to check the reliability of the data.

Results and Discussions

- The average particle size of the LaFeO₃ found to be around 45 nm with fine agglomerations of particles with irregular shape.
- From the EDAX spectra contain La, Fe, and O without any detectable impurity.

Conclusions

- Lanthanum orthoferrite has been synthesized by using sol-gel technique. Rietveld refinement of XRD pattern shows that the sample prepared with single phase, stoichiometric and crystallizes in orthorhombic structure with Pbnm space group.
- FESEM micrograph revealed that the powder is prepared with particle size is ~ 45 nm.
- A canted antiferromagnetic like behaviour of LaFeO₃ is confirmed from ZFC and FC curves, M-H loops confirmed it as weak ferromagnetic material.
- In the LaFeO₃ system, relaxations peaks were absent below 130°C and above which grain and grain boundary relaxations were observed.

Acknowledgments

- Authors acknowledge to UGC-DAE CSR MUMBAI through CRS proposal (CRS-M-226) for providing characterization facilities and financial support.

References