

Structural, Magnetic and Impedance Spectroscopic Analysis of LaFeO₃ Nano-particles T. Lakshmana Rao, M.K. Pradhan and S. N. Dash* **Dept. of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha-7690** dsuryanarayan@gmail.com

Introduction

Experimental Details

 \succ Perovskite rare earth compound oxides such as ABO₃ are very important in-organic functional materials and very interesting physical properties in the area of magnetism and ferroelectricity.

 \succ Lanthanum orthoferrite, LaFeO₃, is one of the most important perovskite-type oxides and has been proposed for various applications such as solid oxide fuel cells, catalysts, chemical sensors.

>Anti-ferromagnetic with a Neel temperature T_N of 738 K.

- > Transition from orthorhombic to rhombohedral at T~ 1260 K.

For the detailed structure, room temperature Powder X-Ray diffraction (XRD) is performed by Rigaku (Ultima IV) X-Ray diffractometer with Cu-Ka radiation.

> The detailed morphology, crystallite size is being measured using FESEM

> For the magnetic measurements of the materials, we have

> 3d electrons are responsible for magnetic ordering which induces lattice distortion.

 \succ Magnetic ordering creates strong local electric field which is responsible \mathfrak{P} for the onset of ferroelectric ordering. It's at RT multiferroics materials

 \succ In this work an effort is made to investigate the impedance spectroscopy and magnetic properties of LaFeO₃

measured temperature dependence magnetization by using vibrating sample magnetometer (ppms-6000).

>Impedance measurement is being carried out using Hioki-3570 impedance. The measurement is repeated several times to check the reliability of the data.

LaFeO (a) (b) n (a Obs. \bigcirc Intensity Calc. Diff. Bragg's **Fig:1(b): EDAX spectrum and FESEM micrograph of LFO nanocrystal(inset).** 0.0027 (a) 70 80 60 0.0024 -90 Fig. 1. Distuald refinament of VDD data. The distanted onther hombic unit call

Results and Discussions

The average particle size of the LaFeO₃ found to be around 45 nm with fine agglomerations of particles with irregular shape.

From the EDAX spectra contain $\left| \stackrel{\star}{\vdots} \right|$ La, Fe, and O without any detectable impurity.

0.2

Fig3:(a) .Im Z or Z " vs f at few representative temperatures, (b) Cole-Cole plots at different temperatures, Inset: equivalent circuit diagram.

> The impedance decreases with increasing T.

LFO (inset).		
▶ In this structure, Fe ⁺³ ions surrounded by six neighboring O^{-2} ions forming FeO ₆ octahedral.	= 0.0021 - H = 500 Oe - FC - ZFC - ZFC - 0.2	≻The relaxation peaks are absent in the temperatures a below 130°C, in which two peaks are observed in 130-190°C range.
➢ It's shows single phase orthorhombic structure with Pbnm S.G.	0.0018 0 100 200 300 -9 -6 -3 0 3 6 9 Temp (K) H (Tesla)	The curves are fitted with the RQ-RQ using equation $C = Q^{1/n} R^{(1-n)/n}$ in Zsimpwin software.
> The unit cell parameters were found to be $a = 5.5541$ Å,	Fig 2: (a) M vs T at 500 Oe. Inverse susceptibility as a function of T (inset). (b) M vs H in T 5K and 300K.	
$b = 5.5659$ Å and $c = 7.8634$ Å with other $R_p = 22.6$, $R_{wp} = 15.9$, $R_{exp} = 12.27$ and $\chi^2 = 1.68$.	A canted antiferromagnetic like behaviour of LaFeO ₃ is confirmed from ZFC and FC curves, M-H loops confirmed it as weak ferromagnetic material.	Semicircles with departed centers from real axis, indicating non- Debye type relaxation.
Conclusions		Deferences
Co	nciusions	References
 Lanthanum orthoferrite has been synthesized by using solwith single phase, stoichiometric and crystallises in orthorh FESEM micrograph revealed that the powder is prepare A canted antiferromagnetic like behaviour of LaFeO₃ is ferromagnetic material. In the LaFeO₃ system, relaxations peaks were absent observed. 	gel technique. Reitveld refinement of XRD pattern shows that the sample prepared ombic structure with <i>Pbnm</i> space group. d with particle size is ~ 45 nm. s confirmed from ZFC and FC curves , M-H loops confirmed it as weak at below 130°C and above which grain and grain boundary relaxations were	 D. I. Khomskii, JMMM, 306, 1 (2006). S. Komine and E. Iguchi, PRL 12, (2007) M. Vishwajit etal, RSC Adv., 5, 14366, (2015). M. Idreesetal, Acta-Materialia ,59 , 1338 (2011). S Acharya etal, Mater. Lett. 64, 415(2010). S. Komineetal, J. Phys and Chem. of Solids , 68 , 1504 (2007). M. Ahmed etal , Adv. Appl. Sci. Res, 5, 370 (2014). Y. Janbutrach etal, Nnaoscale Research Letter 9, 498(2014)
 Co Lanthanum orthoferrite has been synthesized by using solwith single phase, stoichiometric and crystallises in orthorh FESEM micrograph revealed that the powder is prepared A canted antiferromagnetic like behaviour of LaFeO₃ is ferromagnetic material. In the LaFeO₃ system, relaxations peaks were absenobserved. 	gel technique. Reitveld refinement of XRD pattern shows that the sample prepared ombic structure with <i>Pbnm</i> space group. d with particle size is ~ 45 nm. s confirmed from ZFC and FC curves , M-H loops confirmed it as weak at below 130°C and above which grain and grain boundary relaxations were /LEDGMENTS	 D. I. Khomskii, JMMM, 306, 1 (2006). S. Komine and E. Iguchi, PRL 12, (2007) M. Vishwajit etal, RSC Adv., 5, 14366, (2015). M. Idreesetal, Acta-Materialia ,59 , 1338 (2011). S Acharya etal, Mater. Lett. 64, 415(2010). S. Komineetal, J. Phys and Chem. of Solids , 68 , 1504 (2007). M. Ahmed etal , Adv. Appl. Sci. Res, 5, 370 (2014). Y. Janbutrach etal, Nnaoscale Research Letter 9, 498(2014) M. M. Costa, etal J. Appl. Phys. 110, 034107(2011).

(b)

– 300 K