

Giant Dielectric Response in (Sr, Sb) codoped CaCu₃Ti₄O₁₂ Ceramics: A novel approach

M. K. Pradhan¹, T. Lakshmana Rao¹, Lipsarani Karna² and S. Dash^{1,a}

¹Dept. of Physics and Astronomy, NIT Rourkela, Rourkela, Odisha-769008, India ²Dept. of Physics, VSSUT, Burla, Sambalpur, Odisha-768018, India ^{a)} Corresponding author: dsuryanarayan@gmail.com

Abstract

We report enhanced dielectric properties and dielectric relaxation behaviors of CaCu₃Ti₄O₁₂ (CCTO) by adopting a novel approach of codoping (Sr,Sb).Structural, microstructural and dielectric properties were investigated in details. Sr substituted in Ca site can effectively suppress the grain growth, further increase in Sb concentration as a codopant shows hike in dielectric constant. Dielectric properties of CCTO are explained in terms of a capacitive-layer model consisting of semiconducting grains and insulating grain boundaries.

Introduction

Technological applications supercapacitors electronic and devices rely on materials that dielectric a high possesses dissipation, low constant, frequency temperature and stability, energy density, charge-,break-down discharge cycles voltage etc.

nsulating grain boundar

(High resistance)

Results and Discussions

- Quantitative Phase analysis of XRD by Rietveld Method.
- The decrease in lattice parameter with

□ It shows so called "giant-dielectric phenomenon" "colossal or "dielectric constant ~ 10^4 , which is contrast to ferroelectrics.

□ Internal barrier layer capacitor (IBLC) model based on Maxwell–Wagner polarization, relates colossal dielectric permittivity (ϵ) to the electrically heterogeneous microstructure.

Experimental

 $CaCO_3$, CuO, TiO_2 , $SrCO_3$, Sb_2O_5 Appropriate weights of starting materials

A series of samples prepared : $CaCu_{3}Ti_{4}O_{12}$ as CCTO, $Ca_{0.9}Sr_{0.1}Cu_{3}Ti_{4}O_{12}$ as CCTO1, $Ca_{0.9}Sr_{0.1}Cu_3Ti_{3.99}Sb_{0.01}O_{12}$ as CCTO2 and $Ca_{0.9}Sr_{0.1}Cu_{3}Ti_{3.95}Sb_{0.05}O_{12}$ as

- ✓ Mean grain sizes of CCTO, CCTO1, CCTO2 and CCTO3 were found to be 15.61, 12.08, 18.21, 10.04 µm, which indicates the effect of co-doping of Sr and Sb in the microstructure of CCTO.
- SEM micrograph shows microstructure has highly compacted grains with grain boundaries.

—ССТО

10³)

Sr²⁺ and on various concentration of Sb⁵⁺ might be attributed to variations in ionic radii.

Elements	Wycof-	ССТО	CSCTO	CSCTSO1	CSCTSO2	CSCTSO3
	symbol		(Sr=10%)	(Sr=10%,	(Sr=10%,	(Sr=10%,
				Sb=1%)	Sb=3%)	Sb=5%)
Ca/Sr	<i>x</i> , <i>y</i> , <i>z</i>	0,0,0	0,0,0	0,0,0	0,0,0	0,0,0
Cu	<i>x</i> , <i>y</i> , <i>z</i>	0,0.5,0.5	0,0.5,0.5	0,0.5,0.5	0,0.5,0.5	0,0.5,0.5
T : (01		0.05.0.05.0.05	0.05.0.05.0.05	0.05.0.05.0.05	0.05.0.05.0.05	0.05.0.05.0
Ti/Sb	<i>x</i> , <i>y</i> , <i>z</i>	0.25,0.25,0.25	0.25,0.25,0.25	0.25,0.25,0.25	0.25,0.25,0.25	0.25,0.25,0.2
0	<i>x</i> , <i>y</i> , <i>z</i>	0.2949(5)	0.2829(4)	0.3044(2)	0.2987(6)	0.2991(7)
		0.1810(5)	0.1773(6)	0.1663(3)	0.1866(1)	0.1863(1)
		0	0	0	0	0
Cell						
parameter(Å)	a	7.4030(9)	7.4023(2)	7.3958(8)	7.4058(4)	7.3979(4)
Volume(Å ³)	v	405.724	405.303	404.534	406.193	404.895

CCTO3.

- Investigation of Phase purity and microstructures by XRD(CuK α) and SEM(Jeol, USA)
- Coating pellets with silver paint and drying for Impedance Measurement using HIOKI3570 and homemade dieletric cell.

Conclusion

- Dielectric constant of modified CCTO achieved upto several orders by co-doping of Sr, Sb ions.
- Correlation between electrical behavior mainly dielectric relaxation and microstructure reveals that Ο modification affects grain boundary resistance leading to high dielectric constant.
- Giant response is correlated with the potential barrier height at grain boundaries (GBs).

References

- 1. D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002).
- 2. J. Boonlakhorn, P. Kidkhunthod, B. Putasaengc and P. Thongbai, Creamics International, 43, 2705(2017).
- 3. L. Ni, X.M. Chen, Appl. Phys. Lett. **91**, 122905 (2007).
- 4. Derek C. Sinclair, Timothy B. Adams, Finlay D. Morrison, and Anthony R. West, Appl. Phys. Lett. 80, 2153 (2002).
- 5. M. A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000).

- □ One major semicircular arc in all the plots depicts the presence of grain-boundary effect the major contributor towards the as characteristic dielectric behavior of these ceramics.
- □ Radii of semi-circular arcs at a particular temperature varies on modifications ,which may be a consequence of variation in the resistance of grain boundaries.
- \Box Activation energy (E_a) of relaxation calculated to be 0.247eV, 0.258eV, 0.186eV and 0.203eV for CCTO, CCTO1, CCTO2 CCTO3 and respectively.

- At low frequency a gigantic change in the permittivity of CCTO3 occurs as compared to the pure CCTO.
- Frequency dependence of tanδ shows two relaxations, corresponding to DC conduction and primary polarization respectively.

6. Guocai Liu, Huiqing Fan, Jun Xu, Zhiyong Liu and Yuwei Zhao, RSC Adv., 6, 4708 (2016).

