Advances in energy efficient technologies for low-strength wastewater treatment

Kasturi Duttaa,*, Shikha Arorab, Achlesh Davereyb

a National Institute of Technology Rourkela, Odisha 769008, India (Email: duttakasturi@gmail.com; duttakasturi@nitrkl.ac.in)

b School of Environment and Natural Resources, Doon University, Dehradun 248001 India (Email: arorashikha13@gmail.com; achlesh.senr@doonuniversity.ac.in)

**Corresponding author
Dr. Kasturi Dutta, National Institute of Technology Rourkela, Odisha, India 769008 (Email: duttakasturi@gmail.com; duttakasturi@nitrkl.ac.in)

Abstract

Conventional wastewater treatment plants are major energy sink. Anaerobic treatment of high-strength wastewater has been well studied and proven technology for energy recovery. Challenges lies in the anaerobic treatment of low-strength wastewaters such as municipal wastewater. Wastewater treatment technologies, which either recover energy in different forms from wastewater or energy efficient have attracted more attention. Apart from anaerobic treatment, algal technology has become more popular for municipal wastewater treatment and energy recovery in the form of biodiesel. Microbial fuel cells, which generate electricity from wastewater while treating the same, are also gaining much more attention. Anammox (Anaerobic ammonia oxidation) has also been applied in mainstream as an energy efficient technology for municipal wastewater treatment. The current paper reviews the advances in these energy efficient technologies for the treatment of low-strength wastewater. The paper also discusses the limitations of these technologies, which need to be addressed for the successful application of these technologies in treating low-strength wastewaters.

Keywords: Anaerobic treatment; Sewage; Energy recovery; Anammox; Microbial fuel cells; Algal biofuel
Advances in energy efficient technologies for low-strength wastewater treatment

By
Dr. Kasturi Dutta
National Institute of Technology, Rourkela
India
CONVENTIONAL TREATMENT OF LOW-STRENGTH WASTEWATER

- **Primary settler**: 100% COD → 60% COD
- **Activated sludge system**: 60% COD → 30% COD
- **Secondary settler**: 30% COD → 10% COD
- **Anaerobic digestion**: 10% COD → 14% COD

CO₂:
- 30% COD

Biogas (CH₄):
- Return sludge: 26% COD
- Excess sludge: 7% COD
- Effluent: 10% COD

Digestion:
- Digested: 13% COD
The energy consumption is normally in the range of 0.3 to 0.6 kWh/m³ of wastewater treated with an average of 0.45 kWh/m³ equivalent to 1620 kJ/m³.

<table>
<thead>
<tr>
<th>Country</th>
<th>Treatment process</th>
<th>Energy consumption (kWh/m³)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>CAS</td>
<td>0.78</td>
<td>US EPA & US ED 2007</td>
</tr>
<tr>
<td>Edmonton Capital Region (Canada)</td>
<td>CAS</td>
<td>0.33</td>
<td>Lidkea (2007)</td>
</tr>
<tr>
<td>Calgary Fish Creek (Canada)</td>
<td>CAS</td>
<td>0.52</td>
<td>Lidkea (2007)</td>
</tr>
<tr>
<td>Austria</td>
<td>CAS</td>
<td>0.30</td>
<td>Jonasson (2007),</td>
</tr>
<tr>
<td>Sweden</td>
<td>CAS</td>
<td>0.47</td>
<td>Jonasson (2007),</td>
</tr>
<tr>
<td>Belgium</td>
<td>CAS with membrane bioreactor</td>
<td>0.8-1.2</td>
<td>Fenu 2010</td>
</tr>
<tr>
<td>Belgium</td>
<td>CAS with tertiary membrane filtration and</td>
<td>0.59</td>
<td>Fenu 2010</td>
</tr>
</tbody>
</table>
Energy usage characteristics of Bielmlek (Poland) WWTP

- Biological treatment: 47%
- DAF and mechanical treatment: 17%
- Other: 6%
- Sludge processing: 30%

PARADIGM SHIFT IN RECENT PAST

- Though the conventional aerobic treatment technologies like the activated sludge are highly efficient yet these are energy intensive.
- We need energy efficient technologies
- In the past, wastewater was a “problem” but now it is considered as a “resource”
Energy recovery technologies
- Anaerobic treatment
- Microbial Fuel cells
- Algal Technology

Energy efficient nitrogen removal
- Anammox
ANAEROBIC TREATMENT

- Upflow anaerobic sludge blanket (UASB)
- Anaerobic fluidized bed reactor (AFBR)
- Anaerobic membrane reactor (AFMBR)
- Two stage AFBR+AFMBR or SAF-MBR
REACTORS FOR ANAEROBIC TREATMENT

- **UASB**

- **AFBR**

- **Sidestream AMBR**

- **Immersed AMBR**
Reactors for anaerobic treatment

AFBR-AFMBR (Dutta et al., 2014)
LIMITATIONS FOR ANAEROBIC SYSTEM

- Low methane production rate for low strength wastewater.
- Performance decrease for temperature lower than 10°C.
- Nitrogen and other nutrient removals are less.
Microalgae referred to as "third generation" biofuel are oxygen-releasing photosynthetic organisms with a simple cell having no roots, stems, or leaves.
MICROALGAE AND MUNICIPAL WASTEWATER

Integrating microalgae at MWWTP offers many benefits:

- Provides a suitable growth medium
- remove heavy metals (Kumar et al. 2015)
- Fix CO$_2$(1 kg of dry algal biomass utilizes about 1.83 kg of CO$_2$ Chisti 2007) from the atmosphere during photosynthesis and release the oxygen thus solving the problem of global warming
- As microalgae act as tiny aeration devices, they reduce the intensive oxygen demand needed for nitrification in WWTPs.
- Have the ability to remove nutrients (Nitrogen, Phosphorus and other nutrients), heavy metals, toxic substances (both organic and inorganic) present in wastewater.
- Grow rapidly and do not need land for cultivation
- Generates value added components i.e. after lipid extraction the protein-rich residue can be used for feeding the animals and fertilizing crops (Cai, Park, & Li, 2013).

Thus combining microalgae with MWWTPs have resulted in refreshed consideration of the need and benefits of microalgae over traditional nutrient removal technologies.
LIMITATIONS

Pilot-scale application of algae still faces many challenges as:
- A cost-effective harvesting system needs to be developed.
- Further research is needed to identify better algal strains to match the target wastewater.
MICROBIAL FUEL CELLS

Types of MFCs
- Two chamber MFC
- Single chamber MFC
- Air cathode MFC
- Photo-MFC
- Algal assisted MFC
- Microbial carbon capture cell

Dual chambered MFC

Microbial carbon capture cell (Wang et al., 2010)
COMBINED TYPE OF REACTOR DESIGNS

Algae grown MFC (Gajda et al., 2015)

Integrated Photo-Bioelectrochemical System (Xiao et al., 2012)

A closed loop reactor setup consisting of an algal growth unit, an AD and an MFC (Schamphelaire and Verstraete 2008)
ANAMMOX AS ENERGY EFFICIENT TECHNOLOGY FOR NUTRIENT REMOVAL

Innovative anaerobic treatment and energy saving technology like nitritation-anammox for N removal is considered attractive and promising than the conventional nitrification and denitrification process (Gao and Tao 2011). Thanks to the technology as:

- The need to add an electron donor can be avoided
- 60% reduction in power consumption
- Production of surplus sludge is minimized by 80%, thus resulting in significant savings in operation costs. (Abma et al. 2007)
The Anammox is a novel autotrophic biological nitrogen removal process that converts ammonium to dinitrogen (N_2) gas in the absence of oxygen with nitrite (NO_2) as an electron acceptor (Kartal et al. 2013)

\[
\text{Oxygen Demand} = 0.7 \text{ moles } O_2 \\
\text{Reducing Equivalents} = 1 \text{ mole } e^- \\
\text{Biosolids} = 7 \text{ g VSS}
\]
(Case A) Conventional treatment;
(Case B) Conventional treatment, with anammox used for treatment of digester effluent;
(Case C) Optimized treatment, with anammox in the full main water line.
Oxygen and Energy need

<table>
<thead>
<tr>
<th>Oxygen and Energy need</th>
<th>Mass Flux (g/p.d)</th>
<th>Energy (Wh/p.d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case A</td>
<td>Case B</td>
</tr>
<tr>
<td>Aeration for COD removal</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Aeration for nitrogen removal</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Pumping/mixing energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methane-COD and electrical energy production from biogas</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Net Energy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units: Mass flux, grams per person per day (g p⁻¹ d⁻¹); energy, Watthours per person per day (Wh p⁻¹ d⁻¹).
Adopted from Kartal et al. (2010) *Science 328*, 702
CONCLUSION

- The energy self-sufficient WWTPs are definitely feasible. Energy-efficient technologies are being applied to two platforms:
 - The side-stream sludge digestion process
 - Mainline treatment process
- These cutting-edge biotechnologies, in combination with low-energy nutrient-removal/recovery processes, offer an exciting opportunity to realize truly sustainable municipal wastewater treatment.
- There are still many challenges to construct these self-sufficient WWTPs, particularly in developing countries. More efforts are needed in terms of technology, costs, scale of operation and environmental protection issues.