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The dynamic instability behaviour of isotropic, cross-ply and angle-ply laminated composite

plates under combined uniaxial and harmonically varying in-plane point or patch loads is

investigated using finite element analysis. The first order shear deformation theory is used

to model the composite laminates, considering the effects of transverse shear deformation

and rotary inertia. The effect of various geometrical parameters, boundary conditions, lam-

ination and load parameters on the principal dynamic instability regions of composite plates

are studied in detail. The preferential orientations depending on the instability regions for

simply-supported patch and point loaded plates have been suggested for angle ply plates. The

dynamic instability regions has been influenced by the restraint provided at the edges.
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NOTATION

a, b Dimensions of plate

c load band width of patch load/position of point loading

E11, E22 Young’s modulus

G12, G13, G23 shear modulus

[K] Stiffness matrix

[Kσ] Geometric stiffness matrix

[M ] Mass matrix

Ncr Critical buckling load

w Deflection of mid-plane of plate

ν12, ν21 Poisson’s ratio

θx, θy Rotations of the normal about axes

ρ Mass density

σx, σy, τxy Initial in-plane stresses

Ω, ω Frequency of forcing function and transverse vibration

α, β Static and dynamic load factors

2



1 INTRODUCTION

Structural elements subjected to in-plane periodic forces may lead to dynamic instability,

due to certain combinations of the values of load parameters. The instability may occur

below the critical load of the structure under compressive loads over a range or ranges of

excitation frequencies. Several means of combating parametric resonance such as damping

and vibration isolation may be inadequate and sometimes dangerous with reverse results [1].

In contrast to the principal resonance, the parametric instability may arise not merely at a

single excitation frequencies and even for small excitation amplitudes. Thus the dynamic

instability characteristics are of great technical importance for understanding the dynamic

systems under periodic loads. An extensive bibliography of earlier works on these problems

were given in review papers [1-3]. The dynamic instability characteristics of plates subjected

to uniform harmonic loads were studied by Bolotin [4] using the Fourier analysis and by Hutt

and Salam [5] using thin plate finite element model. The increasing use of fibre-reinforced

composite materials in automotive, marine and especially aerospace structures, has resulted

interest in problems involving dynamic instability of these structures. The effect of number

of layers, ply lay-up, orientation and different types of materials introduce material couplings

such as stretching-bending and twisting-bending couplings etc. All these factors interact in

a complicated manner on the vibration frequency spectrum of the laminates affecting the

dynamic instability region. The stability behaviour of laminates is essential for assessment

of the structural failures and optimal design. Birman [6] studied unsymmetric laminates

on the dynamic stability of rectangular plates, neglecting transverse shear deformation and

rotary inertia. Srinivasan and Chellapandi [7] analyzed laminated rectangular plates under

uniaxial loading by the finite strip method. The first order shear deformation theories

were used for the investigation of the dynamic instability of angle ply [8] and cross ply
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[9] laminates, neglecting in-plane and rotary inertia. Tylikowski [10] studied the dynamic

stability of rectangular antisymetrically laminated cross-ply plates. Chen and yang [11]

studied the dynamic stability of thick laminated composite plates subjected to uniform

compressive stress using Galerkin’s finite element. The dynamic instability of laminated

plates was investigated by Cederbaum [12,13] for uniform in-plane loading, using the method

of multiple scales. The instability of composite laminated plates under uniaxial in-plane

loads was investigated by Moorthy, Reddy and Plaut [14] without static load component

using finite element method. The dynamic instability of layered composite plates has been

studied using a high order bending theory by Kwon [15]. The instability of laminated

composite plates considering geometric non-linearity was also reported [16-17]. Patel et

el. [18] studied the dynamic instability of layered anisotropic composite plates on elastic

foundations. Most of the investigators studied the dynamic stability of uniformly loaded

composite plates. However, the externally applied in-plane load and boundary conditions

are seldom uniform in practice. The application of non-uniform loading and boundary

conditions on the structural component will alter the global quantities such as frequency,

buckling load and dynamic instability region (DIR). Cases of practical interests arise when

the in-plane stresses are caused by point forces acting along the boundaries and may contain

singularities during analysis. The static stability analysis of a isotropic flat panel, subjected

to a pair of oppositely directed in-plane concentrated forces was studied by Leissa and Ayub

[19-20]. Deolasi and Datta [21] presented results of dynamic stability of thin (a/h=100),

square, isotropic plates for a classical simply supported boundary conditions having three

degrees of freedom per node. The present paper deals with the study of dynamic stability

behaviour of rectangular isotropic, quasi-isotropic, cross-ply and angle-ply plates subjected

to wide ranges of combined static and harmonically varying in-plane point or patch loads.
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2 THEORETICAL ANALYSIS

The problem considered here consists of rectangular plates (a × b) subjected to in-plane

localized compressive edge loadings as shown in Figure 1. The angle-ply plates under inves-

tigation are assumed to be of moderately thick, thus Mindlin’s first order shear deformation

theory is employed. An eight nodded curved isoparametric element is employed in the

present analysis with five degrees of freedom u, v, w, θx, θy per node. The displacement field

assumes that mid-plane normal remains straight before and after deformation, but not nor-

mal even after deformation so that:

u(x, y, z) = u0(x, y) + zθy(x, y) (1)

v(x, y, z) = v0(x, y)− zθx(x, y)

w(x, y, z) = w0(x, y)

where, u, v, w and u0, v0 and w0 are displacement components in the x, y and z directions

anywhere in the plate and at mid-plane respectively. θx and θy represent rotations of the

mid-plane normal about x and y axes respectively. Green -Lagrange’s strain equations are

used to explain the strain displacement relations. The constitutive relationships for the

laminated Mindlin plate becomes





Ni

Mi

Qi





=




Aij Bij 0

Bij Dij 0

0 0 Sij








εj

kj

γj





(2)

where Aij, Bij, Dij and Sij are the usual extensional, bending-stretching, bending and trans-

verse shear stiffnesses. A shear correction factor of 5/6 is included in Sij for all numerical

computations.
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2.1 Governing equations

The equation of equilibrium for free vibration of a structure subjected to periodic loads can

be expressed in the form

N0(t) = Ns + NtcosΩt (3)

where Ns is the static portion of load N0(t). Nt is the amplitude and Ω is the frequency of

the dynamic portion of N0(t). The stress distribution in the plate will be non-uniform and

periodic . Taking

Ns = αNcr, Nt = βNcr (4)

where α and β are the percentages of the static buckling load Ncr. α and β are termed as

static and dynamic load factors respectively. In this analysis, the buckling load for a fully

loaded plate is taken as the reference load. Using Eq. (4), the equation of motion in matrix

form is obtained as:

[M ]{q̈}+ [[Ke]− αNcr[Kg]− βNcr[Kg]cosΩt]{q} = 0 (5)

Eq. (5) represents a system of second order differential equations with periodic coefficients

of the Mathieu-Hill type. The development of regions of instability arises from Floquet’s

theory which establishes the existence of periodic solutions. The boundaries of the dynamic

instability regions are formed by the periodic solutions of period T and 2T, where T = 2π/Ω.

The boundaries of the primary instability regions with period 2T are of practical importance

[4] and the solution can be achieved in the form of the trigonometric series

q(t) =
∞∑

k=1,3,5

[
{ak}sinkθt

2
+ {bk}coskθt

2

]
(6)

Putting this in Eq.(5) and if only first term of the series is considered, equating coefficients

of sin θt
2

and cos θt
2
, the equation (5) reduces to

[
[Ke]− αNcr[Kg]± 1

2
βNcr[Kg]− Ω2

4
[M ]

]
{q} = 0 (7)
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Eq. (7) represents an eigenvalue problem for known values of α, β and Ncr. The two condi-

tions under a plus and minus sign correspond to two boundaries of the dynamic instability

region (DIR). The eigenvalues are Ω, which give the boundary frequencies of the instability

regions for given values of α and β.

The element matrices can be expressed as:

Elastic stiffness matrix

[Ke]e =
∫

[B]T [D][B]dxdy (8)

Geometric stiffness matrix

[Kσ]e =
∫

[Bg]
T [σ̄][Bg]dxdy (9)

Consistent mass matrix

[M ]e =
∫

[N ]T [I][N ]dxdy (10)

The overall matrices [Ke], [Kσ] and [M] are obtained by assembling the corresponding ele-

ment matrices. The vector of generalized coordinates consists of only active nodal displace-

ments.

2.2 Computer program

A program has been developed to perform all the necessary computations. The element

stiffness and mass matrices are derived using a standard procedure. The geometric stiffness

matrix is essentially a function of the in-plane stress distribution in the element due to ap-

plied edge loading. Since the stress field is non-uniform, plane stress analysis is carried out

using the finite element techniques to determine the stresses and these stresses are used to

formulate the geometric stiffness matrix. Reduced integration technique is adopted for the

element matrices in order to avoid possible shear locking. The overall matrices [Ke], [Kσ] and

[M] are obtained by assembling the corresponding element matrices, using skyline technique.

Subspace iteration method is adopted throughout to solve the eigenvalue problems.
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3 RESULTS AND DISCUSSION

Numerical results are presented for rectangular isotropic and laminated composite plates

with different combinations of boundary conditions. S and C denote a simply-supported

and clamped edge respectively. The notation SCSC identifies a plate with the edges simply

supported at x=0, a and clamped at y=0, b. The following boundary conditions for simply

supported (S), clamped (C) are assumed for the first order shear deformation theory:

Isotropic/ quasi-isotropic/ cross-ply

S: v=w=θx=0 at x=0, a and u=w=θy=0 at y=0, b

C: u=v=w=θx = θy=0 at any edge

Angle-ply

S: u=w=θx=0 at x=0, a and v=w=θy=0 at y=0, b

C: u=v=w=θx = θy=0 at any edge.

3.1 Convergence study

The convergence studies have been carried out for free vibration for a composite plate in

Table 1 and compared with the results of Bert and Chen [22]. The convergence study on

buckling due to a pair of concentrated load is studied for a isotropic plate in Table 2 and

the results are compared with Leissa and Ayub [19]. The study shows good convergence of

the numerical solutions. A 10× 10 mesh has been employed to idealize the flat panel in the

subsequent analysis. This idealisation is chosen in order to apply compression to a small

fraction of the edge length and also for convergence criterion.

The present formulation is then validated for free vibration analysis of angle-ply and cross

ply plates. The results are presented in Tables 3 and 4, showing good comparison with the

literature. To validate the formulation further, the buckling results for angle-ply and cross

ply plates are shown in Tables 5 and 6 respectively and compared with those available in
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the literature. The above studies indicate good agreement exits between the present study

and those from the literature. Once the free vibration and buckling results are validated,

the dynamic instability studies are made.

3.2 Dynamic instability studies

The dynamic instability studies are made for isotropic, quasi-isotropic, cross-ply and angle-

ply plates with a moderately thick plate (b/h=25), subjected to patch and point in-plane

loading throughout the investigation. A ‘standard case’ is defined for the problem in which,

the geometrical and material properties are as follows [14]:

a=250 mm, b=250 mm, h=10 mm,

E1/E2 = 40, G12/E2 = G13/E2 = 0.6, G23/E2 = 0.5, ν = 0.25.

The computed fundamental frequency of vibration (ω), and first critical buckling load (Ncr)

are considered for the determination of stability regions. Dynamic instability regions (DIR)

are plotted in the plane having load frequency (Ω/ω) as abscissa and load amplitude (β =

Nt/Ncr) as ordinate. The instability mode shapes for a laminate under patch load and point

loads are shown in Figure 2.

3.2.1 Isotropic plate

The instability regions are plotted for patch loading from one end to study the effect of

load band width and compared with Ref [21]. The study shows good agreement with the

results as given in Figure 3. The instability studies are then extended to study the effect

of static load factor, aspect ratio and boundary conditions of a moderately thick plate.

The effect of static load factor on instability of partially loaded thick plate is shown in

Figure 4. It is observed that with the increase of static load factor from 0.2 to 0.6, the onset

of dynamic stability occurs earlier and the width of dynamic instability region (DIR) also

increases. The effect of aspect ratio (a/b=1, 2, 3) on the DIR is shown in Figure 5. The
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study reveals that the onset of instability occurs earlier for rectangular plates than square

plate. However, the width of DIR is narrower for rectangular plates in comparison with

square plates. The effect of boundary conditions on dynamic instability regions is shown

in Figure 6. As expected, the onset of instability occurs later and also the width of DIR is

smaller with increase of restraint at the edges. The study is further carried out for laminated

composite cross-ply and angle-ply plates. The instability studies for c/b=1 correspond to

the plate under uniaxial, uniform harmonic loading for which references are available [7-14].

The investigation is then extended for patch and point edge loads. The parametric studies

at c/b=0 correspond to point harmonic loads at the two opposite edges. To validate the

formulation, the principal instability regions for uniform loading are plotted and compared.

3.2.2 Cross ply plate

The instability results of a cross ply plate with ply lay-up 0/90/90/0 is taken as a standard

case and compared with the literature. The study shows good agreement with results of

Moorthy et al. [14]. Then the study is extended to the instability criteria of a quasi-isotropic

material with ply lay-up 0/-45/45/90 [27] and compared in Figure 7. The onset of dynamic

instability occurs earlier for quasi-isotropic plates with wider instability regions. The effect

of aspect ratio on dynamic instability regions of cross ply plates is shown in Figure 8. As

in isotropic plates, the onset of instability occurs later for square plates but with wider

instability zones.

3.2.2.1 Non uniform loading

The instability behaviour of cross ply plates subjected to various non-uniform harmonic

loads including patch and point loads is studied. The effect of load band width on instability

behaviour under patch loading (load case (a) and (b) in Figure 1) is shown in Figure 9. It is

observed that for small values of c/b (=0.2), the onset of instability occurs later with narrow
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width of dynamic instability region in comparison with higher load band width. This may

be due to restraint of the edge, which has a stabilizing effect on the instability behaviour for

a small load band width. As observed from Figure 9, the onset of instability occurs earlier

with wide DIR for load case (b) than that of load case (a). The effect of positions of point

loads on the instability of cross ply plates is also studied. As shown in Figure 10, the onset

of instability occurs later for the load near the edges with narrow DIR. This indicates that

the structure is more stable for point loads near the edges.

3.2.3 Angle-ply plate

The numerical results have been presented with non-dimensionalisation parameter relative

to ω and Ncr of the four layer (±450)2 anti-symmetric angle-ply plate. To validate the

formulation, the principal instability regions for uniform loading are plotted and compared.

3.2.3.1 Uniform loading

The parametric instability regions are plotted for a uniformly loaded anti-symmetric angle-

ply plate without static component to consider the effect of number of layers. It is observed

from Figure 11 that the structure is more stable under periodic loads with increase of number

of layers showing instability regions at higher frequencies and narrower, which compares

well with the literature [14]. The observed behaviour is attributed to the effect of bending-

stretching coupling for the case of laminates, due to decrease of effective stiffness. Then

the effect of ply orientation is also studied for four and two layer laminates as shown in

Figure 12. The effect of ply orientation is symmetrical with respect to 450. It is observed

from Figure 12 (a) that the greater the ply orientation the smaller the instability region for

four layer laminate. The above studies indicate good agreement between the present study

and the literature. In the case of two layer angle-ply laminate (Figure 12 (b), the effect of

ply orientation is symmetrical but the preferential orientation is now 00 but not 450. This
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is may be due to the dominance effect of bending-stretching coupling for 00 ply orientation.

Similar conclusions are also obtained for the effect of ply orientation on free vibration of

anti-symmetric angle-ply laminate by Jones [27]. The effect of bending-stretching coupling

found to be significantly reduced with four layer laminate and all further parametric studies

are done with a four layer laminate combination. The effect of static component of load for

α=0.0, 0.2, 0.4, 0.6 and 0.8 on the instability region is shown in Figure 13. Due to increase of

static component, the instability regions tend to shift to lower frequencies and become wider.

All further studies are made with a static load factor of 0.2 (unless otherwise mentioned).

The effect of aspect ratio is studied for a/b=1, 2 and 3. As shown in Figure 14, the onset of

instability occurs later for square plates than rectangular plates but with wider instability

region, similar to isotropic and cross ply laminates. Figure 15 shows the effect of thickness

on the instability region. It is observed that onset of instability occurs later with narrow

instability regions showing more stiffness, with increase of thickness of a laminate. Then

the study is extended to instability of angle-ply plates subjected to various non-uniform

harmonic loading.

3.2.3.2 Non-uniform loading

Figure 16 shows the instability regions for the load case (a) in Figure 1 for c/b = 0.2 and

c/b = 0.8 for different orientations. Here the effect of ply orientation is not symmetrical

with respect to 450 as in uniform loading. It appears from Figure 16(a) that the instability

regions of plates having 00, 150and 300 ply orientations are narrow in comparison with other

ply orientations. Plates with 300 orientation shows instability at higher frequencies reflecting

it to be stiffer. Plates with ply-ups of 600, 750 and 900 show wider instability regions for

this loading with smaller frequencies. But the patch loaded plates for c/a = 0.8 show

narrow instability regions at 300 and 450. The plates with 450 ply-orientations seem to be
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stiffer due to shifting to higher frequencies. As expected, the plates with 750, 900 lay-ups

show instability at lower frequencies with wide instability regions. As the load band width

increases from 0.2 to 0.8 ( Figure 16(b)), the onset of instability frequencies shift towards to

that of a uniformly loaded plate. But in the case of load case (b), which is more general than

load case (a), the trends are more clear (Figure 17). It is observed from Figure 17(a) that

the ply-orientation of 300 for c/b = 0.2 seems to be the most stiff in consideration of higher

frequency and width of instability region. However, the plates with 450 orientation show

maximum stiffness and narrow instability region at c/b = 0.8 as shown in Figure 17(b). The

instability regions for the point loads are shown in Figure 18. Figure 18 (a) indicates narrow

instability zones for ply orientations of 00, 150 and 300 for load case (c) of Figure 1. This

also shows wide zones of instability for 600, 750, 900 lay-ups. However, the plates of (±300)2

orientation shows more stiffness due to shifting to higher frequencies. The results of the

instability regions for load case (d) for different orientations are shown in Figure 18(b). The

results also indicate that the 00, 150 and 300 have narrow instability regions in comparison

with other lay-ups.
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4 CONCLUSION

The results from a study of the instability behaviour of isotropic, quasi-isotropic, cross-ply

and anti-symmetric angle-ply plates subjected to uniform and non-uniform periodic in-plane

edge loading can be summarized as follows.

1. The onset of instability occurs earlier for rectangular than square plates but with wider

instability regions.

2. Due to static component, the instability regions tend to shift to lower frequencies showing

destabilizing effect on the dynamic stability behaviour of the plate.

3. The onset of instability occurs later with narrow zones of instability with addition of

restraint at the edges.

4. The instability occurs earlier for quasi-isotropic plates than laminated plates.

5. The laminated composite plates become more stiff with more number of layers.

6. The effect of ply orientation is symmetric. 00 and 450 seems to be the preferential

orientations for uniformly loaded 2 and 4 layer anti-symmetric angle-ply plates respectively.

7. The onset of instability occurs later with narrow instability regions showing more stiffness,

with increase of thickness of a laminate.

8. Dynamic instability behaviour under patch compression loading shows that the width of

the instability region increases as the load band width increases.

9.The partial loaded angle-ply plates behave differently to that of uniformly loaded plate.

(±300)2 seems to be the preferential orientation angle for design consideration of instability

for a small load band width. As the load band width increases gradually the frequencies

shift towards a uniformly loaded plate with a optimum ply orientation at 450.

10. However the plates of (±300)2 orientation shows more stiffness due to shifting to higher

frequencies and seems to be the preferential orientation for concentrated loaded plates.
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Table 1 Convergence of non-dimensional free vibration frequencies of four layer anti-symmetric

angle-ply square plates for different ply orientations.

a/b = 1, a/h = 10, E11/E22 = 40, G23 = 0.5E22, G12 = G13 = 0.6E22, ν12 = 0.25

Non dimensional frequency, ω̄ = ωa2
√

( ρ
E22h2 )

Mesh Non-dimensional frequencies for different ply orientation

Division (5/-5/5/-5) (15/-15/15/-15) (30/-30/30/-30) (45/-45/45/-45)

4× 4 14.7545 15.6192 17.6471 18.4747

8× 8 14.7428 15.6066 17.6331 18.4601

10× 10 14.7424 15.6061 17.6325 18.4596

(14.74) (15.61) (17.63) (18.46)

The values given within parenthesis are from Ref. [22].
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Table 2 Convergence of non-dimensional buckling loads for simply-supported rectangular

plates under point loading for different aspect ratio and position of load.

Non dimensional buckling load, λ = Nxb
2/D,D = Eh3

12(1−ν2)

a/b c/b N on-dimensional buckling load

Present FEM Ref [19]

4× 4 8× 8 10× 10

1 0.5 25.8981 25.6446 25.6478 25.814

0.25 37.6665 36.2720 36.3069 37.000

2 0.5 42.0364 28.7918 28.6564 28.523

0.25 50.8079 36.8657 36.6842 36.954
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Table 3 Non-dimensional free vibration frequencies of multi-layered simply-supported anti-

symmetric angle-ply laminated square plate .

E11/E22 = 40, G23 = 0.5E22, G12 = G13 = 0.6E22, ν12 = 0.25

Non dimensional frequency, ω̄ = ωa2
√

( ρ
E22h2 )

a/h 45/-45 45/-45/45/-45 45/-45..(8 layers)

Present Ref [11] Ref [23] Present Ref [11] Ref [23] Present Ref [11] Ref [23]

5 10.333 10.335 10.35 12.627 - 12.64 12.889 12.892 12.90

10 10.042 10.044 10.35 18.4596 18.46 18.49 19.285 19.289 19.31

20 14.179 14.179 14.22 21.870 21.87 21.92 23.257 23.259 23.31

25 14.338 14.338 - 22.4248 - - 23.923 23.924 -

50 14.561 14.561 14.66 23.237 23.24 23.32 24.909 24.909 25.00

100 14.618 14.618 14.90 23.455 - 23.66 25.176 25.176 25.38
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Table 4 Non-dimensional free vibration frequencies of a two-layer anti-symmetric cross-ply

laminated square plates (0/90).

E11/E22 = 25, G23 = 0.2E22, G12 = G13 = 0.5E22, ν12 = 0.25

Non dimensional frequency, ω̄ = ωa2
√

( ρ
E22h2 )

Boundary Non-dimensional frequencies

condition a/h=5 a/h=10 a/h=20 a/h=50

SSSS 7.3901 8.9003 9.4750 9.6600

(7.609) (8.900) (9.504) (9.665)

SCSS 8.1295 10.6120 11.8054 12.2358

(8.454) (10.803) (11.872) (12.247)

SCSC 8.9334 12.6225 14.8748 15.8097

(9.377) (12.622) (15.015) (15.835)

The values given within parenthesis are from Ref [24]
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Table 5 Comparison of buckling loads for thin simply-supported uniformly loaded angle-ply

(θ0/− θ0/θ0) plates.

E11 = 60.7, E22 = 24.8, G12 = 12.0, ν12 = 0.23, a/h = 100

λ = Nxb
2/Do, Do = E11h

3/12(1− ν12ν21)

Angle in Non-dimensional buckling loads

degree Present FEM Ref[25] Ref[26]

0 23.3766 23.39 23.3778

15 24.0053 24.04 23.9906

30 25.3313 25.42 25.2778

45 26.0241 26.14 25.9514

60 25.3332 25.42 25.2778

75 24.0074 24.04 23.9906

90 23.3766 23.39 23.3778
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Table 6 Comparison of buckling loads for simply-supported cross-ply laminated square plates

.

E11/E22 = 40, G12 = G13 = 0.6E22, G23 = 0.5E22, ν12 = 0.25

Non dimensional buckling load, λ = Nxb
2/E2h

3

a/h 0/90 0/90/0 0/90/90/0

Present FEM Ref [23] Present FEM Ref [23] Present FEM Ref [23]

5 7.906 8.628 10.727 11.008 11.4482 11.533

10 11.1137 11.099 22.0907 22.16 23.233 23.27

20 12.4344 12.268 31.0885 30.922 31.599 31.432

25 12.6172 12.395 32.7316 32.515 33.0878 33.089

50 12.8706 12.569 35.2337 34.936 35.3344 35.1

100 12.9358 12.614 35.9242 35.602 35.9501 35.645
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Captions to illustrations

Figure 1 Description of the plate problem: (a) partial edge loading at both ends;(b) partial

edge loading at one end ; (c) pair of concentrated edge loading at both ends; (d) pair of

concentrated edge loading at one end.

Figure 2 Details of instability mode shapes for angle-ply (45/-45/45/-45) plate under non-

uniform loading: a) patch load from one end, c/b=0.2, α=0.2; b) point load from both ends,

c/b=0, α=0.2

Figure 3 Effect of load band width on regions of dynamic instability for isotropic patch

compression loading, load case 1(a), a/b=1, b/h=100, ν = 0.3, α = 0.6

Figure 4 Effect of static load factor on regions of dynamic instability for isotropic patch

compression loading at one end, a/b=1, b/h=25, c/b=0.2, ν = 0.3, α = 0.2, 0.4, 0.6

Figure 5 Effect of aspect ratio on regions of dynamic instability for isotropic patch compres-

sion edge loading at one end, a/b=1, 2 and 3, b/h=25, c/b=0.8 ν = 0.3, α = 0.2

Figure 6 Effect of boundary condition (SSSS, SCSC, CCCC) on regions of dynamic in-

stability for isotropic partial compression loading at one end, a/b=1, b/h=25, c/b=0.5,

ν = 0.3, α = 0.4

Figure 7 Regions of dynamic instability for quasi-isotropic and cross-ply fully loaded com-

pression loading at one end, a/b=1, b/h=25, α = 0.0

Figure 8 Effect of aspect ratio on regions of dynamic instability for cross ply uniformly

loaded compression at one end, a/b=1, 2 and 3,α = 0.2

Figure 9 Effect of load band width on regions of dynamic instability for patch loaded cross-

ply laminate: a) a/b=1, α = 0.2, load case (a) ; b) a/b=1, α = 0.2, load case (b)

Figure 10 Effect of position of loads on regions of dynamic instability for cross ply subjected
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to concentrated loading, a/b=1, c/b=0.0 and 0.5, α = 0.2

Figure 11 Effect of number of layers on instability region of a uniform loaded anti-symmetric

angle-ply plate, c/b=1.0, α = 0.0.

Figure 12 Effect of ply orientation on instability region of uniform loaded anti-symmetric

angle-ply plate: a) 4 layer, c/b=1.0, α = 0.0; b) 2 layer, c/b=1.0, α = 0.0.

Figure 13 Effect of static load factor on instability regions of for uniform loaded anti-

symmetric angle-ply plate, a/b=1, α=0.0, 0.2, 0.4, 0.6 and 0.8

Figure 14 Effect of aspect ratio on instability regions of for uniform loaded anti-symmetric

angle-ply plate, a/b=1, 2 and 3 α = 0.2

Figure 15 Effect of thickness on instability region of a anti-symmetric angle-ply plate a/b=1,

α=0.2, a/h=20, 25 and 30

Figure 16 Effect of ply orientation on instability region of a anti-symmetric angle-ply plate

for load case 1(a): a)α = 0.2, c/b=0.2; b) α = 0.2, c/b=0.8.

Figure 17 Effect of ply orientation angle on instability region of a anti-symmetric angle-ply

plate for load case 1(b): a) α = 0.2, c/b=0.2; b) α=0.2, c/b=0.8.

Figure 18 Effect of ply orientation on instability region of a anti-symmetric angle-ply plate

for point loads: a) load case 1(c); b)load case 1(d).
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