
Adaptive Scheduling of Cloud Tasks Using Ant

Colony Optimization

Sambit Kumar Mishra, Bibhudatta Sahoo and P. Satya Manikyam
National Institute of Technology, Rourkela, India

Email: {skmishra.nitrkl, bibhudatta.sahoo , psatya551}@gmail.com

ABSTRACT

Efficient scheduling of heterogeneous tasks to heterogeneous processors for any application is crucial to

attain high performance. Cloud computing provides a heterogeneous environment to perform various

operations. The scheduling of user requests (tasks) in the cloud environment is a NP-hard optimization

problem. Researchers present various heuristic and metaheuristic techniques to provide the sub-optimal

solution to the problem. In this paper, we have proposed an Ant Colony Optimization (ACO) based task

scheduling (ACOTS) algorithm to optimize the makespan of the system and reducing the average waiting

time. The designed algorithm is implemented and simulated in CloudSim simulator. Results of simulations

are compared to Round Robin and Random algorithms which show satisfactory output.

Keywords

Ant Colony Optimization (ACO); cloud computing; Makespan; task scheduling; VM.

1. INTRODUCTION

The term “Cloud Computing" refers to the provision of computing resources as a service. All the physical servers are
connected to the Internet. These servers are located remotely, means the servers are remote from the location from
where the services requested. The cloud computing systems are built from some virtualized data centers and a finite
number of physical server (hosts) contributes a data center. A large number of servers required to provide services to
huge number of cloud users. The cloud service provider (CSP) manages all the cloud resources to provide services
and maintain certain level of quality of services (QoS). The cloud users submit their task to the CSP and an agreement
had been done among them. This agreement is popularly known as service level agreement (SLA). The CSP provide
services as per the SLA. The violation of SLA makes a difference in the profit. These QoS and SLA can handle with
optimal allocation of resources.

The allocation of virtual resources (CPU, main memory, disc, bandwidth, etc.) play a significant role in reducing the
energy consumption, optimizing makespan, reducing waiting time and increasing throughput of the system [1, 2, 3]. In
cloud platforms, scheduling takes place at two levels. First, when the tasks are uploaded to the cloud, the scheduler
assigns the requested tasks to different virtual machines, attempting to reduce the completion time of multiple
applications across virtual machines. Second, allocating the virtual machines to physical machines to balance the load
or to reduce energy consumption etc. (for example, Amazon EC2 uses elastic load balancing (ELB) to control how
incoming requests are handled). The arrival of tasks (workloads) may cause bursty or non-bursty traffic. Example of
bursty traffics are bursty surges and Internet flash crowds, there by aggressively grouped together in small periods
there by create spikes with high arrival rate. The presence of burstiness in request arrival rate can cause degradation
of the performance of task scheduler.

We have used the Expected Time to Compute (ETC) model as task model. This ETC model represents the task
heterogeneity as well as machine heterogeneity. The task allocation or scheduling problem is a well-known NP-
complete problem. The NP-complete nature of the problem focuses tremendous interest for researchers to propose
sub-optimal solutions. Researchers proposed some heuristic approaches and metaheuristic approaches to optimize
different objectives [4]. We have proposed a heuristic algorithm based on Ant Colony Optimization (ACO) technique to
optimize makespan and average waiting time of the system. The main idea behind this approach is to use feedback
mechanism and try to imitate the style of nature ant colonies to search for good by connecting to each other with the
help of pheromone laid on food path traveled. Makespan is defined as the time required to execute a finite set of tasks
by the system. A good scheduler of tasks should be able to adapt its strategy for scheduling to the varying environment
and type of tasks [3].

1.1 Basic Idea of Ant Colony Optimization
The Ant Colony Optimization (ACO) is initially proposed by Colorni et al. [5]. The main idea behind ACO is based on

the behavior of ant food searching process [6]. Ants used to search for food randomly, and after finding their food ants

return to their ant colony by keeping pheromone trail on the path from food place to colony. Once they found the food

path, next time instead of random traveling, they used to follow pheromone trail, by hoping that this trail leads to food.

With the time, however, the trail starts to evaporate, which leads to lessen an attractive strength. If the ants take more

time to travel through this path, the more time trail used to present. Simultaneously, the shorter path to food from source

has more pheromone trail, since by the time being ants used to find this short path and goes through the short path.

The density of pheromone on the longer path is less than, the shorter one. The pheromone evaporation eliminates the

convergence of the local optimal solution. The effect of pheromone evaporation is very important when it is applying to

real time problems [7].

In ant colony optimization system, every ant is a computation agent. It constructs the optimal solution to the problem

iteratively. The solutions obtained at intermediate states are referred as solution states. In each generation every ant

transit from one state ‘i’ to state ‘j’ moving towards a locally optimal solution. Thereby, in each iteration, every ant

computes a set of feasible solutions to its present state by using probability and move it to one of the local optimal

states. For every ant k, the probability of 𝑃𝑖𝑗
𝑘of moving to state j from state i generally depends on two parameters,

coefficient of vaporization phenomenon or pheromone concentration denoted by 𝜏𝑖𝑗 indicating the previous move and

visibility of the move denoted by 𝜂𝑖𝑗 indicating the past worth of the move. These values keep on updating for the better

optimal solution in each iteration. In every iteration, their value may increase or decrease based on their effect to get

an optimal solution. In general, the probability of ant k moving from state i to state j is given by Eq. (1).

𝑷𝒊𝒋
𝒌 =

(𝒊𝒛
𝜶)(

𝒊𝒛

𝜷
)

∑ (𝒊𝒛
𝜶)(

𝒊𝒛

𝜷
)𝑽𝑴_𝒍𝒊𝒔𝒕 ∈𝒂𝒍𝒍𝒐𝒘𝒆𝒅𝒌

 (1)

 𝜏𝑖𝑗 denotes pheromone concentration for transition from state i to j.

 0 ≤ α is a parameter to control the influence pheromone concentration.

 𝜂𝑖𝑗 is the desirability of transition from state i to state j. It is calculated using priori information, i.e., it is

computed by a priori knowledge, typically 1/dij, where d is the distance).

 β 1 is a parameter to control the influence of 𝜂𝑖𝑗 .

 VM_list allowedk, where VM_list is list of VMs allowed by ant k.

The overall result of this update is that when one ant found the path to food sourced from the colony, remaining ants

most probably follow that path, and this positive feedback of previous ants which have already found the path eventually

leads to all ants follow the shortest path.

Contributions: This work has the following contributions:

 Presented the study of task scheduling in cloud computing environment using Ant Colony Optimization.

 Proposed an ACO-based task scheduling algorithm (ACOTS) to increase the stability of the system, reduce

the waiting time, and minimize the makespan of the system.

 Evaluate a comparison analysis among our algorithm with Random and Round-Robin (RR) algorithm.

The main aim of writing this paper is to propose an algorithm for minimizing the makespan by maximizing the utilization

of CPU-time, and reducing the waiting time. The remaining of the paper is prepared as follows. Section 2 outlines an

overview of some related work; Section 3 describes a brief idea about the cloud system model and represents the

problem statement along with some constraints. Section 4 illustrated our proposed work to optimize the makespan and

average waiting time in a heterogeneous computing environment. Section 5, explains about simulation results and

effectiveness of our algorithm. Section 6, concludes the paper.

2. RELATED WORK
Multiple heuristic methods concerning the allocation of tasks as well as balancing of the tasks to optimize some

parameters have proposed in the literature. Due to a significant amount of interactive data or information and have a

deadline to execute services, usually, in most of the time, users could not get the service with acceptable QoS. After

receiving the task from the user, the resources of the cloud data center are virtualized. Task execution time is more

relevant to everyone, and for this, there should be a decent management of physical resources by an efficient mapping

between the tasks and VMs [8]. The mapping requires a balancing of loads among VMs and minimizes the makespan

of the system. Most of the existing task scheduling algorithms based on Ant Colony Optimization focused on to reduce

the makespan [9, 10]. Some research work tries to reduce makespan as well as other defined objectives. Very little

research work focuses on balancing the load, makespan of the system, and starvation of tasks simultaneously. ACO

is an evaluation approach, and many modifications and improvements have done to the basic ACO with time. Various

research works have been done for task scheduling in Grid and Cloud as follows.

Tawfeek et al. [9] tried to reduce the makespan of the data center through task scheduling. They constrained each ant

to visit one VM once and designed heuristic function based on the transfer time and expected execution time of tasks

on different VMs. Wen et al. [11] came with the idea of combining ACO with PSO to improve the performance of the

system. They proposed this to increase the convergence speed and eliminate the problem of falling in local optimal

solution.

Table 1. Comparison of various ACO based scheduling algorithms

Referenced
work

Improvement strategy Performance
metrics

Nature of
tasks

Environment

[9] Basic ACO Makespan Independent Cloud

[10] perform local search after every iteration Makespan Dependent Cluster

[11] combined ACO with PSO Makespan Dependent Cloud

[12] Instead of updating individual solution. It update
single result set to improve the load balancing.

Load

Independent Not
mentioned

[13] Balancing the load for OCCF considering Complex
Network

Load Independent Not
mentioned

[14] By finding overloaded and under-loaded perform Load
Balancing

Load, SLA,
Energy

Consumption

Independent Cloud

[15] Load of systems of hot spots are identified and shifted
by ACO

Load Independent Cloud

[16] Basic ACO Load Independent Cloud

[17] modification in pheromone updation strategy Makespan Independent Grid

[18] Adaptively changed the pheromone evaporation rate. Makespan, Load Independent Grid

[19] Standard deviation based pheromone updation Makespan Independent Grid

[20] Balancing the load of Virtual Machines Makespan, Load Independent Cloud

Some researchers are worked to balance the load of VMs through task scheduling algorithm thereby improve the

system performance in the cloud environment. Zhang et al. [12] proposed a load balancing algorithm for open cloud

computing Federation. Li et al. [13] proposed a new Ant Colony Based Load Balancing algorithm to schedule

independent task with the objective of minimizing the makespan and balancing the load among all virtual machines.

Kumar et al. [14] used the trailing and foraging pheromones to find out under loaded and overloaded virtual machines.

Gu and LU [15] designed a strategy for balancing the load dynamically based on ACO. In their strategy, they identified

the VMs which having resources more than the threshold value is found and they named them as hot spots. The tasks

on those overloaded machines are moved to nearest machines having less load (or under loaded machines). In [16],

the tasks are scheduled to virtual machines on First Come First Serve basis. They have used the ACO technique to

find out under loaded VMs.

As from Table 1, very less work concentrated on load balancing and reducing makespan simultaneously. Little research

work is done for task scheduling using ACO for reducing makespan, optimizing waiting time and balancing the load in

the cloud computing environment. In some of the research work, tasks have generated randomly and some have taken

very fewer tasks to evaluate their algorithms. But to evaluate one algorithm properly, there is need to generate the task

as per the real time task arrivals in the cloud computing system. By keeping all these facts, we design an adaptive task

scheduler to reduce makespan, load balancing using ACO.

3. TASK SCHEDULING USING ANT COLONY OPTIMIZATION IN CLOUD
The cloud system linked with some data centers. These data centers constitute from a finite set of physical servers or

hosts. With the help of hypervisor or virtual machine manager (VMM), some VMs are deployed in every hosts. The

virtual cloud resources in the form of virtual machines execute all user requests. The CSP follow the specified SLAs

during the delivery of services to cloud users. We have designed an Adaptive Task Scheduling (ATS) algorithm using

ACO. The ATS is able to take care condition of bursty arrivals. The mathematical formulation of ATS is as follows.

Decreasing the makespan and waiting time is primary objective and balancing load is secondary objective. We had

followed the basic steps as [5], but we had incorporated our approaches to define appropriate parameters.

3.1 Representation of Problem

The problem is represented as two sets VM_list, task_list where the set VM_list represents the set of m number of VMs

and task_list represents the set of n number of tasks. The mapping of n tasks to m VMs will affect the cloud system

performance. According to this mapping, various parameters are optimized. Here, mapping of tasks to VMs done by

ants. Initially, all ants placed on the VMs randomly. During each iteration, every ant builds a new solution by moving

from one virtual machine to another virtual machine for next task until all tasks allocated to virtual machines. These

iterations indicated by 1 ≤ iter ≤ max_no_iter where max_no_iter is the maximum number of allowed iterations. The

symbol table is listed in Table 2.

Table 2. Symbol table with description

Symbol Description
n Total number of input tasks
m Total number of VMs
α Influence pheromone

concentration control parameter

β Influence control parameter of 𝜂𝑖𝑗.

ηij Desirability of transition from state i
to state j. ρ Coefficient of vapour phenomenon

𝜏ij Pheromone concentration between
ith task and jth VM

z Number of ants
Q Adaptive parameter in each

iteration VM_list The finite set of VMs
task_list The finite set of tasks

max_no_iter Maximum number of iteration
allowed

3.2 Constraint Satisfaction
We have used constraint satisfaction method to avoid the local optimal solutions and avoid infeasible solutions. There

by minimizing the time of the task and VM mapping.

3.3 Pheromone Updating Rule
The main important thing of ant system is updation of pheromone as it influences the performance of the task

scheduling. Pheromone updation means when pheromone evaporates on edges, then new pheromone will be

deposited on the edges visited by ants. The pheromone value directly influences the solution quality built by all ants.

Pheromone concentration between ith task and jth VM is shown by 𝜏𝑖𝑗. This value will be changed after every iteration

as shown in Eq. (2).

𝑖𝑗(𝑡) = (1 −)𝑖𝑗(𝑡) + 𝑖𝑗(𝑡) (2)

where is coefficient of vapour phenomenon, 0 < < 1 and Δ𝜏𝑖𝑗(t) is computed by Eq. (3).

𝑖𝑗(𝑡) = ∑ 𝑖𝑗
𝑘

𝑚

𝑘=1

(𝑡) (3)

where 𝑖𝑗
𝑘 (𝑡) is the pheromone concentration between ith task and jth VM according to ant k.

𝑖𝑗
𝑘 (𝑡) = {

𝑄

𝑀𝑆𝑘(𝑡)
, 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑂𝑘(𝑡)

0, 𝑖𝑓 (𝑖, 𝑗) 𝑂𝑘(𝑡)

where tour traveled by ant k is given by Ok(t) in iteration t, MSk(t) is cost or length of path, and Q is the adaptive

parameter. When it comes to scheduling, we defined it as makespan (the maximum expected processing time) given

by Eq. (4).

𝑀𝑆𝑘(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 ∈𝐽 ∑(𝑑𝑖𝑗)

𝑖∈𝐼

 (4)

We have calculated the availability time of VM after processing all tasks assigned by ant k. Where dij is a simple

heuristic that helps to visible the path from i to j is defined by Eq. (5).

𝑑𝑖𝑗 =
𝑇𝑎𝑠𝑘_𝑙𝑒𝑛𝑖

𝑉𝑀_𝑆𝑝𝑒𝑒𝑑𝑗

+ 𝑉𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑡𝑖𝑚𝑒 (5)

Here, dij depends on two things. One is time taken to execute the ith task and jth VM and another is VMs availability time

indicating after how much time VM can execute the ith task. This equation plays key role in performance of ATS. Since,

it includes processing time and availability time, it reduces the makespan of the system and balances load on the virtual

machines.

We have calculated the visibility of pheromone on the path from ith task to jth VM is defined by heuristic dij by following

Eq. (6).

𝜂
𝑖𝑗

=
1

𝑑𝑖𝑗

 (6)

When every ant finds out their best path to assign task set to VM set, then one ant update value of 𝜏𝑖𝑗 globally by

considering the global best path till iteration t as in Eq. (7).

𝑖𝑗(𝑡) = 𝑖𝑗(𝑡) +
𝑄

𝑀𝑆+ 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇+ (7)

Here, MS+ denotes the makespan of the system for the optimal allocation (T+).

3.4 Probabilistic Transition Rule
The probabilistic transition rule shows how the probability is assigned to map ith task to jth VM and it is shown in (1).

During every iteration of ACO algorithm, each ant built and update the total probability values of every VM for each

task. According to the probability, the tasks are assigned to different VMs.

4. ALGORITHM FOR ATS
Makespan minimization is an essential responsibility in the cloud computing environment to achieve maximum

utilization of resources [20, 21]. In this section, we have discussed our proposed algorithm for adaptive task scheduler

using ACO is shown in Algorithm 1 named it as ACO-based Task Scheduling (ACOTS). The proposed algorithm runs

for a finite number of iterations (max_no_iter). The task_list, VM_list, ETCij are provided as input to the Algorithm 1 to

get the makespan of the system as output. The ETC matrix represents the expected time to compute the i th task on jth

VM. The ETC matrix is build using the task length from task_list and processing speed of the VM from VM_list (i.e.,

ETCij = Length (task_listi) / Speed(VM_listj)). The variable iter is initialized with 1 and incremented by 1 after each

iteration until the value of iter reaches to max_no_iter. Initially, the execution time (ET) for all VM is set to 0. Then, we

have to find out the appropriate VM from the VM_list for each task through each ant movement. Therefore, we have

estimated the probability value of the task for each VM through kth ant using Eq. (1).

The variable VMT[k][i] holds the VM_id for the allocation of ith task through kth ant. In step-21 of Algorithm-1, Ai keeps

the ant_id for ith task and this will be performed as follows. The matrix prob has probability values of each ant for

different tasks. Therefore, the selection of ant will be the ant which has maximum probability value for the specific task.

After that, we get the VM_id as j. Then, the allocation is done for ith task to jth VM and the EX-values of the VMs are

updated using the previous EX-value and the ETC-value. The variable Makespan_Iter keeps the makespan value for

that iteration. After successful completion of all iterations, the global makespan value is found out in step-32 of Algorithm

1.

5. SIMULATION & RESULTS

We have evaluated the proposed algorithm (ACOTS) through simulation with generated datasets. The experiments

were done using CloudSim-3.0.3 simulator [22]. The version of the system is Intel Core i7 4th Generation processor,

3.4 GHz CPU and 8GB RAM running on Microsoft Windows 8 platform. The task arrival rate is generated with Pareto

distribution. The performance of ACO based task scheduling algorithm is highly depended on different parameters. We

have conducted experiments to decide best parameter to enhance algorithms. To find out best value of each parameter,

we have varied those parameters by keeping remaining parameters constant. The details of the tasks, virtual machines

characteristics are explained in the Table 3.

Table 3. Simulation Environment

Entity Attribute Value
VM Processing Power 1000-2000 MIPS

Number of VMs 50
Task Task Size 1000-10000 MI

Number of Tasks 500

Algorithm 1 ACO-based Task Scheduling (ACOTS)

Input: task_list, VM_list, ETCij

Output: Makespan

1. iter = 1
2. EX = 0
3. While iter + + ≤ max_no_iter do
4. Initialize VM_list[m][n] for all ants set VM_list

except first ant and task set task_list.

5. Initialize 𝜏𝑖𝑗 to positive value i task_list

and j VM_list
6. for each ant k = 1 to z do
7. for i = 1 to n do
8. max_prob = 0, id = 0;
9. for j = 1 to m do

10. Compute Pij
k by using Eq. (1)

11. if Pij
k > max_probij then

12. max_ probij = Pij
k

13. id = j;
14. end if
15. end for
16. VMT[k][i] = id;
17. Prob[k][i] = max_probij
18. end for
19. end for
20. for i = 1 to n do

21. Ai = Ant_ID{Max(prob[k][i]) over k, 1 ≤ k
≤ z}

22. end for
23. for i = 1 to n do

24. j = VMT[Ai][i]
25. Task_list[i] is allocated to VM_list[j]
26. EX[j] = EX[j] + ETCij
27. end for
28. Makespan_Iter[iter] = Max{ EX over all

VMs}
29. Update local pheromone by using (2)
30. Update global pheromone by using (7)
31. end while
32. Makespan = Max{ Makespan_Iter}
33. return Makespan

5.1 Setting & Evaluation of ACO Parameters
As Explained, the performance of the ACO algorithm depends on the values of parameters. Here, we have considered

six parameters and those are α, β, , z, Q, and max_no_iter. We tested possible values of every parameter by keeping

other parameters constant.

The number of tasks, VMs and their attributes are kept constant for the simulation. Initially, we have taken the value of

parameters as α = 0.5, β = 0.5, = 0.5, z = 5, Q = 50, and max_no_iter = 100. We have estimated the makespan of

system by changing the parameters in the order of α, β, , z, Q, and max_no_iter within the range from the more

influencing factor as shown in Table 4. In Table 4, the second column (Range) is in the form of a-b-c which means that

parameter varied from a to c with step wise increment of b. The makespan value by changing the parameters in the

order of α, β, , z, Q, and max_no_iter are shown in Figure 1 to Figure 6 respectively.

Figure 1. ACOTS Performance with Different α Values to calculate makespan

Figure 2. ACOTS Performance with different β values to calculate makespan

Figure 3. ACOTS Performance with different values to calculate makespan

Figure 4. ACOTS performance with different z values to calculate makespan

Figure 5. ACOTS Performance with different Q values to calculate makespan

Figure 6. ACOTS Performance with Different number of iterations to calculate Makespan

From these results, we have set all the mentioned parameters for the comparison of ACOTS algorithm with Random

and Round-Robin algorithm. The optimal values of these parameters are listed in the last column of Table 4. The

number of heterogeneous input tasks is initially 200 and increased to 1000 in the interval of 200. The number

heterogeneous VMs is fixed as 50. Fig. 7 and Fig. 8 shows the makespan and average waiting time comparison

respectively for Random, Round-Robin, and ACOTS algorithms. It is surely evident from the bar-graphs that ACOTS

is more effective when evaluated with the other two standard algorithms. Figure 7 and Figure 8 shows the makespan

and average waiting time comparison respectively for Random, Round-Robin, and ACOTS algorithms. It is surely

evident from the bar-graphs that ACOTS is more effective when evaluated with the other two standard algorithms.

Table 4. Fixing of ACO Based ATS Parameters

Parameter Range Other Parameters Best Value
α 0 – 0.2 – 1 β = 0.5; = 0.5; z = 5; Q = 100; max_no_iter = 50 0.4

β 0 – 0.5 – 2 α = 0.3; = 0.5; z = 5; Q = 100; max_no_iter = 100 1.5

 0.1 – 0.1 – 0.7 α = 0.3; β = 1.5; z = 5; Q = 100; max_no_iter = 100 0.6
z 5 – 5 – 30 α = 0.3; β = 1.5; = 0.6; Q = 100; max_no_iter = 100 15

Q 100 – 100 – 500 α = 0.3; β = 1.5; = 0.6; z = 15; max_no_iter = 100 150
max_no_iter 25 – 25 – 150 α = 0.3; β = 1.5; = 0.6; z = 15; Q = 150 75

Figure 7. Comparison of makespan of various algorithms to calculate makespan

Figure 8. Comparison of waiting time of various algorithms to calculate makespan

6. CONCLUSION
We have studied the allocation of tasks in the heterogeneous cloud computing environment. We have proposed an

algorithm (ACOTS) for the distribution of user requests to virtualized resources with optimal makespan and the

minimum average waiting time. The proposed ACO-based approach also considered the bursty arrival of tasks in the

cloud environment. The proposed algorithm assigns tasks to VMs using probability function to optimize the mentioned

parameters. A task with a high priority gets service first to minimize the makespan of the system and to maximize the

profit of CSP. The parameter of designed algorithm had set for the optimal performance of ACOTS through simulation

in CloudSim simulator. We have compared our proposed algorithm with the Random and Round-Robin algorithm. The

simulation results show the satisfactory results.

7. REFERENCES
[1] Fan, G., Yu, H., and Chen, L. (2016). A formal aspect-oriented method for modeling and analyzing adaptive

resource scheduling in cloud computing. IEEE Transactions on Network and Service Management, 13(2), 281-
294. DOI= 10.1109/TNSM.2016.2553157.

[2] Nayak, S. C., and Tripathy, C. (2016). Deadline sensitive lease scheduling in cloud computing environment using
AHP. Journal of King Saud University-Computer and Information Sciences. DOI =
https://doi.org/10.1016/j.jksuci.2016.05.003.

[3] Jain, N. K., Willke, T. L., Datta, K., and Yigitbasi, N. (2016). U.S. Patent No. 9,342,376. Washington, DC: U.S.
Patent and Trademark Office.

[4] Mishra, S. K., Sahoo, K. S., Sahoo, B., & Jena, S. K. (2016). Metaheuristic Approaches to Task Consolidation
Problem in the Cloud. Resource Management and Efficiency in Cloud Computing Environments, 168.

[5] Colorni, A., Dorigo, M., and Maniezzo, V. (1992). Distributed optimization by ant colonies. In Toward a practice of
autonomous systems: proceedings of the First European Conference on Artificial Life, pp. 134, Mit Press.

[6] Liang, Y. C., and Smith, A. E. (2004). An ant colony optimization algorithm for the redundancy allocation problem
(RAP). IEEE Transactions on reliability, 53(3), 417-423. DOI = 10.1109/TR.2004.832816.

[7] Pacini, E., Mateos, C., and Garino, C. G. (2015). Balancing throughput and response time in online scientific
Clouds via Ant Colony Optimization. Advances in Engineering Software, 84, 31-47. DOI =
https://doi.org/10.1016/j.advengsoft.2015.01.005.

[8] Puthal, D., Sahoo, B. P. S., Mishra, S., and Swain, S. (2015, January). Cloud computing features, issues, and
challenges: a big picture. In Computational Intelligence and Networks (CINE), 2015 International Conference on
(pp. 116-123). IEEE.

[9] Tawfeek, M. A., El-Sisi, A., Keshk, A. E., and Torkey, F. A. (2013). Cloud task scheduling based on ant colony
optimization. 8th International Conference on Computer Engineering & Systems (ICCES), 64-69. DOI =
10.1109/ICCES.2013.6707172.

[10] Chiang, C. W., Lee, Y. C., Lee, C. N., and Chou, T. Y. (2006). Ant colony optimisation for task matching and
scheduling. IEEE Proceedings-Computers and Digital Techniques, 153(6), 373-380. DOI = 10.1049/ip-

cdt:20050196.

[11] Wen, X., Huang, M., and Shi, J. (2012). Study on resources scheduling based on ACO algorithm and PSO
algorithm in cloud computing. 11th International Symposium on Distributed Computing and Applications to
Business, Engineering & Science (DCABES), 219-222. DOI = 10.1109/DCABES.2012.63.

https://doi.org/10.1016/j.jksuci.2016.05.003

[12] Zhang, Z., and Zhang, X. (2010). A load balancing mechanism based on ant colony and complex network theory
in open cloud computing federation. 2nd International Conference on Industrial Mechatronics and Automation
(ICIMA), 2, 240-243. DOI = 10.1109/ICINDMA.2010.5538385.

[13] Li, K., Xu, G., Zhao, G., Dong, Y., and Wang, D. (2011). Cloud task scheduling based on load balancing ant colony
optimization. In Chinagrid Sixth Annual Conference (ChinaGrid), 3-9. DOI = 10.1109/ChinaGrid.2011.17.

[14] Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K. P., and Rastogi, R. (2012). Load balancing of nodes in
cloud using ant colony optimization. 14th International Conference on Computer Modelling and Simulation
(UKSim), 3-8. DOI = 10.1109/UKSim.2012.11.

[15] Lu, X., and Gu, Z. (2011). A load-adapative cloud resource scheduling model based on ant colony algorithm. IEEE
International Conference on Cloud Computing and Intelligence Systems (CCIS), 296-300. DOI =
10.1109/CCIS.2011.6045078.

[16] Dam, S., Mandal, G., Dasgupta, K., and Dutta, P. (2014). An ant colony based load balancing strategy in cloud
computing. Springer publishing in Advanced Computing, Networking and Informatics, 2, 403-413. DOI =
https://doi.org/10.1007/978-3-319-07350-7_45.

[17] Mathiyalagan, P., Suriya, S., and Sivanandam, S. N. (2010). Modified ant colony algorithm for grid scheduling.
International Journal on computer science and Engineering, 2(02), 132-139.

[18] Liu, A., and Wang, Z. (2008). Grid task scheduling based on adaptive ant colony algorithm. International
Conference on Management of e-Commerce and e-Government (ICMECG’08), 415-418. DOI =
10.1109/ICMECG.2008.50.

[19] Bagherzadeh, J., and MadadyarAdeh, M. (2009). An improved ant algorithm for grid scheduling problem. 14th
International CSI on Computer Conference (CSICC), 323-328. DOI = 10.1109/CSICC.2009.5349368.

[20] Kalra, M., and Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud computing. Egyptian
informatics journal, 16(3), 275-295. DOI = https://doi.org/10.1016/j.eij.2015.07.001.

[21] Mishra, S. K., Puthal, D., Sahoo, B., Jena, S. K., and Obaidat, M. S. (2017). An adaptive task allocation technique
for green cloud computing. The Journal of Supercomputing. DOI = https://doi.org/10.1007/s11227-017-2133-4.

[22] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011). CloudSim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software:
Practice and experience, 41(1), 23-50. DOI = 10.1002/spe.995.

