
Adaptive Scheduling of Cloud Tasks Using Ant 

Colony Optimization 

Sambit Kumar Mishra, Bibhudatta Sahoo and P. Satya Manikyam 
National Institute of Technology, Rourkela, India 

Email: {skmishra.nitrkl, bibhudatta.sahoo , psatya551}@gmail.com 

 

ABSTRACT 

Efficient scheduling of heterogeneous tasks to heterogeneous processors for any application is crucial to 

attain high performance. Cloud computing provides a heterogeneous environment to perform various 

operations. The scheduling of user requests (tasks) in the cloud environment is a NP-hard optimization 

problem. Researchers present various heuristic and metaheuristic techniques to provide the sub-optimal 

solution to the problem. In this paper, we have proposed an Ant Colony Optimization (ACO) based task 

scheduling (ACOTS) algorithm to optimize the makespan of the system and reducing the average waiting 

time. The designed algorithm is implemented and simulated in CloudSim simulator. Results of simulations 

are compared to Round Robin and Random algorithms which show satisfactory output. 
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1. INTRODUCTION 

The term “Cloud Computing" refers to the provision of computing resources as a service. All the physical servers are 
connected to the Internet. These servers are located remotely, means the servers are remote from the location from 
where the services requested. The cloud computing systems are built from some virtualized data centers and a finite 
number of physical server (hosts) contributes a data center. A large number of servers required to provide services to 
huge number of cloud users. The cloud service provider (CSP) manages all the cloud resources to provide services 
and maintain certain level of quality of services (QoS). The cloud users submit their task to the CSP and an agreement 
had been done among them. This agreement is popularly known as service level agreement (SLA). The CSP provide 
services as per the SLA. The violation of SLA makes a difference in the profit. These QoS and SLA can handle with 
optimal allocation of resources. 

The allocation of virtual resources (CPU, main memory, disc, bandwidth, etc.) play a significant role in reducing the 
energy consumption, optimizing makespan, reducing waiting time and increasing throughput of the system [1, 2, 3]. In 
cloud platforms, scheduling takes place at two levels. First, when the tasks are uploaded to the cloud, the scheduler 
assigns the requested tasks to different virtual machines, attempting to reduce the completion time of multiple 
applications across virtual machines. Second, allocating the virtual machines to physical machines to balance the load 
or to reduce energy consumption etc. (for example, Amazon EC2 uses elastic load balancing (ELB) to control how 
incoming requests are handled). The arrival of tasks (workloads) may cause bursty or non-bursty traffic. Example of 
bursty traffics are bursty surges and Internet flash crowds, there by aggressively grouped together in small periods 
there by create spikes with high arrival rate. The presence of burstiness in request arrival rate can cause degradation 
of the performance of task scheduler.  

We have used the Expected Time to Compute (ETC) model as task model. This ETC model represents the task 
heterogeneity as well as machine heterogeneity. The task allocation or scheduling problem is a well-known NP-
complete problem. The NP-complete nature of the problem focuses tremendous interest for researchers to propose 
sub-optimal solutions. Researchers proposed some heuristic approaches and metaheuristic approaches to optimize 
different objectives [4]. We have proposed a heuristic algorithm based on Ant Colony Optimization (ACO) technique to 
optimize makespan and average waiting time of the system. The main idea behind this approach is to use feedback 
mechanism and try to imitate the style of nature ant colonies to search for good by connecting to each other with the 
help of pheromone laid on food path traveled. Makespan is defined as the time required to execute a finite set of tasks 
by the system. A good scheduler of tasks should be able to adapt its strategy for scheduling to the varying environment 
and type of tasks [3]. 

1.1 Basic Idea of Ant Colony Optimization 
The Ant Colony Optimization (ACO) is initially proposed by Colorni et al. [5]. The main idea behind ACO is based on 

the behavior of ant food searching process [6]. Ants used to search for food randomly, and after finding their food ants 



return to their ant colony by keeping pheromone trail on the path from food place to colony. Once they found the food 

path, next time instead of random traveling, they used to follow pheromone trail, by hoping that this trail leads to food. 

With the time, however, the trail starts to evaporate, which leads to lessen an attractive strength. If the ants take more 

time to travel through this path, the more time trail used to present. Simultaneously, the shorter path to food from source 

has more pheromone trail, since by the time being ants used to find this short path and goes through the short path. 

The density of pheromone on the longer path is less than, the shorter one. The pheromone evaporation eliminates the 

convergence of the local optimal solution. The effect of pheromone evaporation is very important when it is applying to 

real time problems [7]. 

In ant colony optimization system, every ant is a computation agent. It constructs the optimal solution to the problem 

iteratively. The solutions obtained at intermediate states are referred as solution states. In each generation every ant 

transit from one state ‘i’ to state ‘j’ moving towards a locally optimal solution. Thereby, in each iteration, every ant 

computes a set of feasible solutions to its present state by using probability and move it to one of the local optimal 

states. For every ant k, the probability of 𝑃𝑖𝑗
𝑘of moving to state j from state i generally depends on two parameters, 

coefficient of vaporization phenomenon or pheromone concentration denoted by 𝜏𝑖𝑗 indicating the previous move and 

visibility of the move denoted by 𝜂𝑖𝑗 indicating the past worth of the move. These values keep on updating for the better 

optimal solution in each iteration. In every iteration, their value may increase or decrease based on their effect to get 

an optimal solution. In general, the probability of ant k moving from state i to state j is given by Eq. (1). 
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 𝜏𝑖𝑗  denotes pheromone concentration for transition from state i to j. 

 0 ≤ α is a parameter to control the influence pheromone concentration. 

 𝜂𝑖𝑗  is the desirability of transition from state i to state j. It is calculated using priori information, i.e., it is 

computed by a priori knowledge, typically 1/dij, where d is the distance). 

 β  1 is a parameter to control the influence of 𝜂𝑖𝑗 . 

 VM_list  allowedk, where VM_list is list of VMs allowed by ant k. 

The overall result of this update is that when one ant found the path to food sourced from the colony, remaining ants 

most probably follow that path, and this positive feedback of previous ants which have already found the path eventually 

leads to all ants follow the shortest path. 

Contributions: This work has the following contributions: 

 Presented the study of task scheduling in cloud computing environment using Ant Colony Optimization. 

 Proposed an ACO-based task scheduling algorithm (ACOTS) to increase the stability of the system, reduce 

the waiting time, and minimize the makespan of the system. 

 Evaluate a comparison analysis among our algorithm with Random and Round-Robin (RR) algorithm. 

The main aim of writing this paper is to propose an algorithm for minimizing the makespan by maximizing the utilization 

of CPU-time, and reducing the waiting time. The remaining of the paper is prepared as follows. Section 2 outlines an 

overview of some related work; Section 3 describes a brief idea about the cloud system model and represents the 

problem statement along with some constraints. Section 4 illustrated our proposed work to optimize the makespan and 

average waiting time in a heterogeneous computing environment. Section 5, explains about simulation results and 

effectiveness of our algorithm. Section 6, concludes the paper. 

2. RELATED WORK 
Multiple heuristic methods concerning the allocation of tasks as well as balancing of the tasks to optimize some 

parameters have proposed in the literature. Due to a significant amount of interactive data or information and have a 

deadline to execute services, usually, in most of the time, users could not get the service with acceptable QoS. After 

receiving the task from the user, the resources of the cloud data center are virtualized. Task execution time is more 

relevant to everyone, and for this, there should be a decent management of physical resources by an efficient mapping 

between the tasks and VMs [8]. The mapping requires a balancing of loads among VMs and minimizes the makespan 

of the system. Most of the existing task scheduling algorithms based on Ant Colony Optimization focused on to reduce 

the makespan [9, 10]. Some research work tries to reduce makespan as well as other defined objectives. Very little 

research work focuses on balancing the load, makespan of the system, and starvation of tasks simultaneously. ACO 

is an evaluation approach, and many modifications and improvements have done to the basic ACO with time. Various 

research works have been done for task scheduling in Grid and Cloud as follows. 

Tawfeek et al. [9] tried to reduce the makespan of the data center through task scheduling. They constrained each ant 

to visit one VM once and designed heuristic function based on the transfer time and expected execution time of tasks 



on different VMs. Wen et al. [11] came with the idea of combining ACO with PSO to improve the performance of the 

system. They proposed this to increase the convergence speed and eliminate the problem of falling in local optimal 

solution. 

Table 1. Comparison of various ACO based scheduling algorithms 

Referenced 
work 

Improvement strategy Performance 
metrics 

Nature of 
tasks 

Environment 

[9] Basic ACO Makespan Independent Cloud 

[10] perform local search after every iteration Makespan Dependent Cluster 

[11] combined ACO with PSO Makespan Dependent Cloud 

[12] Instead of updating individual solution. It update 
single result set to improve the load balancing. 

Load 
 

Independent Not 
mentioned 

[13] Balancing the load for OCCF considering Complex 
Network 

Load Independent Not 
mentioned 

[14] By finding overloaded and under-loaded perform Load 
Balancing 

Load, SLA, 
Energy 

Consumption 

Independent Cloud 

[15] Load of systems of hot spots are identified and shifted 
by ACO 

Load Independent Cloud 

[16] Basic ACO Load Independent Cloud 

[17] modification in pheromone updation strategy Makespan Independent Grid 

[18] Adaptively changed the pheromone evaporation rate. Makespan, Load Independent Grid 

[19] Standard deviation based pheromone updation Makespan Independent Grid 

[20] Balancing the load of Virtual Machines Makespan, Load Independent Cloud 

 

Some researchers are worked to balance the load of VMs through task scheduling algorithm thereby improve the 

system performance in the cloud environment. Zhang et al. [12] proposed a load balancing algorithm for open cloud 

computing Federation. Li et al. [13] proposed a new Ant Colony Based Load Balancing algorithm to schedule 

independent task with the objective of minimizing the makespan and balancing the load among all virtual machines. 

Kumar et al. [14] used the trailing and foraging pheromones to find out under loaded and overloaded virtual machines. 

Gu and LU [15] designed a strategy for balancing the load dynamically based on ACO. In their strategy, they identified 

the VMs which having resources more than the threshold value is found and they named them as hot spots. The tasks 

on those overloaded machines are moved to nearest machines having less load (or under loaded machines). In [16], 

the tasks are scheduled to virtual machines on First Come First Serve basis. They have used the ACO technique to 

find out under loaded VMs. 

As from Table 1, very less work concentrated on load balancing and reducing makespan simultaneously. Little research 

work is done for task scheduling using ACO for reducing makespan, optimizing waiting time and balancing the load in 

the cloud computing environment. In some of the research work, tasks have generated randomly and some have taken 

very fewer tasks to evaluate their algorithms. But to evaluate one algorithm properly, there is need to generate the task 

as per the real time task arrivals in the cloud computing system. By keeping all these facts, we design an adaptive task 

scheduler to reduce makespan, load balancing using ACO.  

3. TASK SCHEDULING USING ANT COLONY OPTIMIZATION IN CLOUD 
The cloud system linked with some data centers. These data centers constitute from a finite set of physical servers or 

hosts. With the help of hypervisor or virtual machine manager (VMM), some VMs are deployed in every hosts. The 

virtual cloud resources in the form of virtual machines execute all user requests. The CSP follow the specified SLAs 

during the delivery of services to cloud users. We have designed an Adaptive Task Scheduling (ATS) algorithm using 

ACO. The ATS is able to take care condition of bursty arrivals. The mathematical formulation of ATS is as follows. 

Decreasing the makespan and waiting time is primary objective and balancing load is secondary objective. We had 

followed the basic steps as [5], but we had incorporated our approaches to define appropriate parameters. 

3.1 Representation of Problem 

The problem is represented as two sets VM_list, task_list where the set VM_list represents the set of m number of VMs 

and task_list represents the set of n number of tasks. The mapping of n tasks to m VMs will affect the cloud system 



performance. According to this mapping, various parameters are optimized. Here, mapping of tasks to VMs done by 

ants. Initially, all ants placed on the VMs randomly. During each iteration, every ant builds a new solution by moving 

from one virtual machine to another virtual machine for next task until all tasks allocated to virtual machines. These 

iterations indicated by 1 ≤ iter ≤ max_no_iter where max_no_iter is the maximum number of allowed iterations. The 

symbol table is listed in Table 2. 

Table 2. Symbol table with description 

Symbol Description 
n Total number of input tasks 
m Total number of VMs 
α Influence pheromone 

concentration control parameter  

β Influence control parameter of  𝜂𝑖𝑗. 

ηij Desirability of transition from state i 
to state j. ρ Coefficient of vapour phenomenon 

𝜏ij Pheromone concentration between 
ith task and jth VM 

z Number of ants 
Q Adaptive parameter in each 

iteration VM_list The finite set of VMs 
task_list The finite set of tasks 

max_no_iter Maximum number of iteration 
allowed  

3.2 Constraint Satisfaction 
We have used constraint satisfaction method to avoid the local optimal solutions and avoid infeasible solutions. There 

by minimizing the time of the task and VM mapping. 

3.3 Pheromone Updating Rule 
The main important thing of ant system is updation of pheromone as it influences the performance of the task 

scheduling. Pheromone updation means when pheromone evaporates on edges, then new pheromone will be 

deposited on the edges visited by ants. The pheromone value directly influences the solution quality built by all ants. 

Pheromone concentration between ith task and jth VM is shown by 𝜏𝑖𝑗. This value will be changed after every iteration 

as shown in Eq. (2). 

𝑖𝑗(𝑡) = (1 −  )𝑖𝑗(𝑡) +  𝑖𝑗(𝑡)                    (2) 

where  is coefficient of vapour phenomenon, 0 <  < 1 and Δ𝜏𝑖𝑗(t) is computed by Eq. (3). 

𝑖𝑗(𝑡) =  ∑ 𝑖𝑗
𝑘

𝑚

𝑘=1

(𝑡)                                 (3) 

where 𝑖𝑗
𝑘 (𝑡) is the pheromone concentration between ith task and jth VM according to ant k. 

𝑖𝑗
𝑘 (𝑡) =  {

𝑄

𝑀𝑆𝑘(𝑡)
, 𝑖𝑓 (𝑖, 𝑗) ∈  𝑂𝑘(𝑡)

0,                    𝑖𝑓 (𝑖, 𝑗) 𝑂𝑘(𝑡)

 

where tour traveled by ant k is given by Ok(t) in iteration t, MSk(t) is cost or length of path, and Q is the adaptive 

parameter. When it comes to scheduling, we defined it as makespan (the maximum expected processing time) given 

by Eq. (4). 

𝑀𝑆𝑘(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 ∈𝐽 ∑(𝑑𝑖𝑗)

𝑖∈𝐼

                    (4) 

We have calculated the availability time of VM after processing all tasks assigned by ant k. Where dij is a simple 

heuristic that helps to visible the path from i to j is defined by Eq. (5). 



𝑑𝑖𝑗 =  
𝑇𝑎𝑠𝑘_𝑙𝑒𝑛𝑖

𝑉𝑀_𝑆𝑝𝑒𝑒𝑑𝑗

+ 𝑉𝑀𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑡𝑖𝑚𝑒              (5) 

Here, dij depends on two things. One is time taken to execute the ith task and jth VM and another is VMs availability time 

indicating after how much time VM can execute the ith task. This equation plays key role in performance of ATS. Since, 

it includes processing time and availability time, it reduces the makespan of the system and balances load on the virtual 

machines. 

We have calculated the visibility of pheromone on the path from ith task to jth VM is defined by heuristic dij by following 

Eq. (6). 

𝜂
𝑖𝑗

=  
1

𝑑𝑖𝑗

                                                        (6) 

When every ant finds out their best path to assign task set to VM set, then one ant update value of 𝜏𝑖𝑗 globally by 

considering the global best path till iteration t as in Eq. (7). 

𝑖𝑗(𝑡) =  𝑖𝑗(𝑡) +  
𝑄

𝑀𝑆+    𝑖𝑓 (𝑖, 𝑗) ∈ 𝑇+                    (7) 

Here, MS+ denotes the makespan of the system for the optimal allocation (T+). 

3.4 Probabilistic Transition Rule 
The probabilistic transition rule shows how the probability is assigned to map ith task to jth VM and it is shown in (1). 

During every iteration of ACO algorithm, each ant built and update the total probability values of every VM for each 

task. According to the probability, the tasks are assigned to different VMs. 

4. ALGORITHM FOR ATS 
Makespan minimization is an essential responsibility in the cloud computing environment to achieve maximum 

utilization of resources [20, 21]. In this section, we have discussed our proposed algorithm for adaptive task scheduler 

using ACO is shown in Algorithm 1 named it as ACO-based Task Scheduling (ACOTS). The proposed algorithm runs 

for a finite number of iterations (max_no_iter). The task_list, VM_list, ETCij are provided as input to the Algorithm 1 to 

get the makespan of the system as output. The ETC matrix represents the expected time to compute the i th task on jth 

VM. The ETC matrix is build using the task length from task_list and processing speed of the VM from VM_list (i.e., 

ETCij = Length (task_listi) / Speed(VM_listj)). The variable iter is initialized with 1 and incremented by 1 after each 

iteration until the value of iter reaches to max_no_iter. Initially, the execution time (ET) for all VM is set to 0. Then, we 

have to find out the appropriate VM from the VM_list for each task through each ant movement. Therefore, we have 

estimated the probability value of the task for each VM through kth ant using Eq. (1). 

The variable VMT[k][i] holds the VM_id for the allocation of ith task through kth ant. In step-21 of Algorithm-1, Ai keeps 

the ant_id for ith task and this will  be performed as follows. The matrix prob has probability values of each ant for 

different tasks. Therefore, the selection of ant will be the ant which has maximum probability value for the specific task. 

After that, we get the VM_id as j. Then, the allocation is done for ith task to jth VM and the EX-values of the VMs are 

updated using the previous EX-value and the ETC-value. The variable Makespan_Iter keeps the makespan value for 

that iteration. After successful completion of all iterations, the global makespan value is found out in step-32 of Algorithm 

1. 

5. SIMULATION & RESULTS 
 

We have evaluated the proposed algorithm (ACOTS) through simulation with generated datasets. The experiments 

were done using CloudSim-3.0.3 simulator [22]. The version of the system is Intel Core i7 4th Generation processor, 

3.4 GHz CPU and 8GB RAM running on Microsoft Windows 8 platform. The task arrival rate is generated with Pareto 

distribution. The performance of ACO based task scheduling algorithm is highly depended on different parameters. We 

have conducted experiments to decide best parameter to enhance algorithms. To find out best value of each parameter, 

we have varied those parameters by keeping remaining parameters constant. The details of the tasks, virtual machines 

characteristics are explained in the Table 3. 

 

 



Table 3. Simulation Environment 

Entity Attribute Value 
VM Processing Power 1000-2000 MIPS 

Number of VMs 50 
Task Task Size 1000-10000 MI 

Number of Tasks 500 
 

Algorithm 1 ACO-based Task Scheduling (ACOTS) 

 

Input: task_list, VM_list, ETCij 

Output: Makespan 

1. iter = 1 
2. EX = 0 
3. While iter + + ≤ max_no_iter do 
4.        Initialize VM_list[m][n] for all ants set VM_list 

except first ant and task set task_list. 

5.        Initialize 𝜏𝑖𝑗  to positive value i  task_list 

and j  VM_list 
6.        for each ant k = 1 to z do 
7.               for i = 1 to n do 
8.                      max_prob = 0, id = 0; 
9.                      for j = 1 to m do 

10.                             Compute Pij
k by using Eq. (1) 

11.                              if Pij
k > max_probij then 

12.                                     max_ probij = Pij
k 

13.                                     id = j; 
14.                              end if 
15.                       end for 
16.                       VMT[k][i] = id; 
17.                       Prob[k][i] = max_probij 
18.                end for 
19.       end for 
20.       for i = 1 to n do  

21.              Ai = Ant_ID{Max(prob[k][i]) over k, 1 ≤ k 
≤ z} 

22.       end for 
23.       for i = 1 to n do  

24.              j = VMT[Ai][i] 
25.              Task_list[i] is allocated to VM_list[j] 
26.              EX[j] = EX[j] + ETCij 
27.        end for 
28.        Makespan_Iter[iter] = Max{ EX over all 

VMs} 
29.        Update local pheromone by using (2) 
30.        Update global pheromone by using (7) 
31. end while 
32. Makespan = Max{ Makespan_Iter} 
33. return Makespan 

 

5.1 Setting & Evaluation of ACO Parameters 
As Explained, the performance of the ACO algorithm depends on the values of parameters. Here, we have considered 

six parameters and those are α, β, , z, Q, and max_no_iter. We tested possible values of every parameter by keeping 

other parameters constant.  

The number of tasks, VMs and their attributes are kept constant for the simulation. Initially, we have taken the value of 

parameters as α = 0.5, β = 0.5,  = 0.5, z = 5, Q = 50, and max_no_iter = 100. We have estimated the makespan of 

system by changing the parameters in the order of α, β, , z, Q, and max_no_iter within the range from the more 

influencing factor as shown in Table 4. In Table 4, the second column (Range) is in the form of a-b-c which means that 



parameter varied from a to c with step wise increment of b. The makespan value by changing the parameters in the 

order of α, β, , z, Q, and max_no_iter are shown in Figure 1 to Figure 6 respectively. 

 

Figure 1. ACOTS Performance with Different α Values to calculate makespan 

 

Figure 2. ACOTS Performance with different β values to calculate makespan 

 

Figure 3. ACOTS Performance with different  values to calculate makespan 

 

Figure 4. ACOTS performance with different z values to calculate makespan 



 

Figure 5. ACOTS Performance with different Q values to calculate makespan 

 

Figure 6. ACOTS Performance with Different number of iterations to calculate Makespan 

From these results, we have set all the mentioned parameters for the comparison of ACOTS algorithm with Random 

and Round-Robin algorithm. The optimal values of these parameters are listed in the last column of Table 4. The 

number of heterogeneous input tasks is initially 200 and increased to 1000 in the interval of 200. The number 

heterogeneous VMs is fixed as 50. Fig. 7 and Fig. 8 shows the makespan and average waiting time comparison 

respectively for Random, Round-Robin, and ACOTS algorithms. It is surely evident from the bar-graphs that ACOTS 

is more effective when evaluated with the other two standard algorithms. Figure 7 and Figure 8 shows the makespan 

and average waiting time comparison respectively for Random, Round-Robin, and ACOTS algorithms. It is surely 

evident from the bar-graphs that ACOTS is more effective when evaluated with the other two standard algorithms. 

Table 4. Fixing of ACO Based ATS Parameters 

Parameter Range Other Parameters Best Value 
α 0 – 0.2 – 1 β = 0.5;  = 0.5; z = 5; Q = 100;  max_no_iter = 50 0.4 

β 0 – 0.5 – 2 α = 0.3;  = 0.5; z = 5; Q = 100;  max_no_iter = 100 1.5 

 0.1 – 0.1 – 0.7 α = 0.3; β = 1.5; z = 5; Q = 100;  max_no_iter = 100 0.6 
z 5 – 5 – 30 α = 0.3; β = 1.5;  = 0.6; Q = 100;  max_no_iter = 100 15 

Q 100 – 100 – 500 α = 0.3; β = 1.5;  = 0.6; z = 15;  max_no_iter = 100 150 
max_no_iter 25 – 25 – 150 α = 0.3; β = 1.5;  = 0.6; z = 15; Q = 150 75 

 

 
Figure 7. Comparison of makespan of various algorithms to calculate makespan 



 

Figure 8. Comparison of waiting time of various algorithms to calculate makespan 

6. CONCLUSION 
We have studied the allocation of tasks in the heterogeneous cloud computing environment. We have proposed an 

algorithm (ACOTS) for the distribution of user requests to virtualized resources with optimal makespan and the 

minimum average waiting time. The proposed ACO-based approach also considered the bursty arrival of tasks in the 

cloud environment. The proposed algorithm assigns tasks to VMs using probability function to optimize the mentioned 

parameters. A task with a high priority gets service first to minimize the makespan of the system and to maximize the 

profit of CSP. The parameter of designed algorithm had set for the optimal performance of ACOTS through simulation 

in CloudSim simulator. We have compared our proposed algorithm with the Random and Round-Robin algorithm. The 

simulation results show the satisfactory results. 
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