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Abstract—Modelling composite wireless fading channel is cru-
cial for design and performance analysis of communication
system. In this regard, Nakagami/lognormal (NL) distribution is
a widely acceptable composite channel model for characterizing
SNR of wireless channel. However, probability density function
of NL model is not in closed form which limits its applicability.
Interestingly, KG model is found to be a good approximation of
NL distribution with relatively simpler mathematical expression.
In this paper, we propose to reparameterize the KG distri-
bution suitably to approximate the NL distribution for SISO
channel.The analytical expressions of outage probability, average
symbol error rate and channel capacity are also derived for
accessing the performance of reparametrized KG model. Further-
more, analytical capacity bound is derived for the reparametrized
KG distribution to model SNR of MIMO wireless channel by
exploiting majorization theory. Finally, experimental results are
demonstrated to show the usefulness of the proposed KG model
which validates the applicability of reparametrized model in
approximating NL distribution.

I. INTRODUCTION

Modelling terrestrial wireless propagation has significant
effect on performance of digital communication system. Typ-
ically, a wireless radio frequency (RF) channel experience
joint effect of two independent random process such as small
scale fading and large scale fading. Small scale fading that
results from multipath effect leads to rapid fluctuations of
signal. On the other hand, large scale fading that arise due
to shadowing from various obstacles in the transmission link
results into relatively slow variation of mean signal level [1].
The statistical model that encompasses simultaneous effect
of multipath fading and shadowing is known as composite
fading. Various composite models were proposed in [2] of
which Nakagami-lognormal (NL) is the most common channel
model.

The NL distribution assumes small scale and large scale
fading statistics to be Nakagami and log-normal distributed,
respectively. In formulating the above NL distribution, the
mean square value of received carrier amplitude E[α2] is con-
sidered to be unity. Here, the use of log-normal distribution as
large scale fading component of NL distribution makes it more
attractive in wireless channel modelling due to the applicability
of log-normal distribution in characterizing fading channel for
diverse scenario. However, the major drawback associated with
NL model is that, the probability density function (PDF) is
mathematically complicated and has no closed form expres-
sion making the further analysis of system performance more

difficult. In view of that, several other models such as K, KG,
Weibull/gamma, G and η − µ/gamma have been developed
that approach NL distribution with having less mathematical
complexity [3]. KG distribution achieves good fit for both
line of sight (LOS) and non-line of sight (NLOS) channel
and is expressed in closed form mathematical expression. On
the contrary, Weibull/gamma distribution has no experimental
validation and less tractable. Similarly, η−µ/gamma distribu-
tion is not as tractable as KG model. Although G distribution
has better fit to lognormal based model, it is less tractable as
compared to KG model. It can be noted that, K distribution
can be expressed as a special case of KG distribution by
adjusting the shaping parameter.

In recent years, a good amount of research has been
devoted towards performance analysis of KG model [4]. For
example, authors in [5] analyzed the statistical behavior of
average symbol error rate (SER), capacity and outage proba-
bility. Similarly, performance analysis under various adaptive
schemes are investigated in [6]. Essential statistical metrics
of KG distribution are derived in [7] considering different
diversity schemes including equal gain combining (EGC),
maximal ratio combining (MRC) and selection combining
(SC). Furthermore, a multi input multi output (MIMO) channel
is considered in [8] where, analytical capacity bound is ob-
tained by using majorization theory. Recently, authors in [9],
investigated on the physical-layer security over single input
multiple output (SIMO) fading channel.

In the aforementioned literature, KG model is obtained
by averaging the instantaneous Nakagami-m distributed small
scale received signal envelop over the conditional PDF of
gamma shadowing. The authors in [4]–[9] assumed E[α2] to
be non-unity which deviates from the assumption considered
in formulating NL distribution. This limits the accuracy of KG

model in approximating NL distribution and hence affect the
system performance. Therefore, in this work we consider the
mean square value of received carrier amplitude to be unity in
modelling the fading channel and analyzed the consequences
on system performance.

Researches regarding analysis on statistical characteristics
of composite MIMO channel is limited because, the joint pdf
of SNR distribution in simplified manner is quite difficult to
achieve, specifically when the small scale fading is Nakagami-
m distributed. However, the authors derived an closed form
expression for upper bound of ergodic capacity considering



small scale fading statistics to be Nakagami-m distributed
[8], [10]. Therefore by using similar arguments as in [10]
and [8], we formulate analytical bound for channel capacity
of reparameterized KG distribution to model SNR of MIMO
channel.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminaries on composite fading channel.
Section III presents a detail explanation about distribution of
KG PDF. In section IV, capacity bound for KG distributed
MIMO channel is discussed. Finally, experimental results and
conclusion are given in section V and VI respectively.

II. COMPOSITE FADING CHANNEL

A. Preliminaries
Radio wave propagation through wireless channels experi-

ence composite distribution due to shadowing and multipath
fading. This fading scenario often suits for the case where
the mobile users are either stationary or slowly moving. In
such communication environment, instead of averaging out the
multipath fading effect, the receiver operates on the instanta-
neous composite multipath/shadowed signal. According to Lee
[11], the amplitude of signal envelop α can be expressed as
a product of microscopic multipath fading and macroscopic
shadowing as given below.

α = αaσa (1)

where αa and σa are envelop of fading and shadowing,
respectively. Nevertheless, SNR is considered as most com-
mon performance metric in digital communication system.
Thus, the instantaneous SNR per symbol can be expressed
by γ = α2Es/N0 and average SNR per symbol by γ̄ =
E
(
α2
)
Es/N0, where E[α2] is the mean square value of α,

Es is the energy per symbol and N0 denotes one-sided power
spectral density of additive white Gaussian noise (AWGN).
Thus, γ can be rewritten as

γ =
α2γ̄

E (α2)
(2)

Here the multipath fading and shadowing are considered to
be two independent random process. So, the distribution of
composite fading is obtained by averaging the instantaneous
small scale fading power over the PDF of shadowing as
follows

fα(α) =

∞∫
0

fα|σ (α|σ) fσ(σ) dσ (3)

where fσ(σ) denotes PDF of macroscopic fading, σ
(
= σ2

a

)
and the conditional density fα|σ (α|σ) can be defined in terms
of microscopic fading PDF (fαa(αa)) as

fα|σ (α|σ) =
1

σa
fαa

(
α

σa

)
(4)

As evident from (3), a multitude of composite models have
been reported in the literature [3] for versatile fσ(σ) and
fα|σ (α|σ). The NL distribution is found to be attractive in
modelling SNR of wireless channel, details of which are given
immediately next.

B. NL fading channel

The NL distribution considers αa and σ to be Nakagami-m
and log-normal distributed, respectively. The PDF of micro-
scopic fading, αa is expressed as

fαa (αa) =
2mmα2m−1

a e−mα
2
a

Γ(m)
, αa > 0 (5)

where Γ(·) is gamma function and m denotes fading param-
eter. Now, plugging (5) in (4), the conditional PDF can be
obtained as

fα|σ (α|σ) =
2mmα2m−1e−

mα2

σ

Γ(m)σm
, α > 0 (6)

Then the PDF of macroscopic shadowing, σ is given as

fσ(σ) =
1√

2πλσ
e−

(ln(σ)−µ)2

2λ2 , σ > 0 (7)

where λ, µ denote scale and location parameter respectively.
Substituting (6) and (7) in (3) and utilizing the relation (2),
the SNR distribution of NL fading channel can be given as

fγ(γ) =

∞∫
0

γm−1e−
mγ
γ̄σ

Γ(m)

(
m

γ̄σ

)m
e−

(ln(σ)−µ)2

2λ2

√
2πλσ

dσ (8)

Here the distribution of SNR given in (8) can be called gamma-
lognormal (GL) distribution. Noticeably, the resulting SNR
distribution of GL channel has no closed form expression,
thereby limited to performance analysis of communication
links.

III. THE REPARAMETRIZED KG DISTRIBUTION FOR SISO
CHANNEL

In this section, we formulate the PDF of KG channel model
by considering E[α2] to be unity. Furthermore, analytical
closed form expression for different statistical characteristics
such as cumulative distribution function (CDF), moments and
moment generating function (MGF) are derived.

A. Formulation of PDF

The small scale fading amplitude of KG channel follows
Nakagami-m distribution as given in (6), whereas shadow-
ing is modelled using gamma distribution [12]. Accordingly,
fσ(σ) of (3) can be given by

fσ(σ) =
βξ

Γ(ξ)
σξ−1e−βσ ξ, β > 0 (9)

where, ξ, β denote shape and inverse scale parameter, respec-
tively. By plugging (6) and (9) in (3), we obtain the PDF of
KG distribution as

fα(α) =
2mmα2m−1βξ

Γ(m)Γ(ξ)

∞∫
0

σξ−m−1e−
mα2

σ −βσ dσ (10)



Using the identity
∞∫
0

tν−1e−a/t−bt dt = 2
(
a
b

)ν/2
Kν

(
2
√
ab
)

[13] in (10), we achieve the closed form PDF of α as

fα(α) =
4

Γ(m)Γ(ξ)
(βm)

m+ξ
2 αm+ξ−1Kξ−m

(
2
√
mβα2

)
(11)

where, β = ξ/γ̄ and Kν(·) is kth order modified Bessel
function of second kind. Now the SNR distribution fγ(γ) of
KG model can be obtained from (11) using (2) and expressed
as

fγ(γ) =
2

Γ(m)Γ(ξ)

(
mβ

γ̄

)m+ξ
2

γ
m+ξ

2 −1Kξ−m

(
2

√
mβ

γ̄

√
γ

)
(12)

Interestingly, the use of gamma distribution to model shadow-
ing leads to a closed form expression as given in (12). Here
it is evident that, both the small scale and large scale fading
follow gamma distribution. Thus fγ(γ) in (12) is termed as
Gamma-Gamma distribution.

However, in the existing literature [4]–[9], the authors
considered E[α2] as non-unity. In such cases, the resulting
PDF of γ is given by [4]

fγ(γ) =
2

Γ(m)Γ(ξ)
(mβ)

m+ξ
2 γ

m+ξ
2 −1Kξ−m

(
2
√
mβ
√
γ
)

(13)
From (12) and (13), a notable difference in expression can
be figured out. The PDF of (13) can be considered as special
case of (12) where the average SNR γ̄ makes the difference.
Alternatively, (12) can be acknowledged as reparametrized
form of (13). In the rest of the paper, the PDFs given in (12)
and (13) are referred to as KG(R) and KG model, respectively.

In order to illustrate the effectiveness of both KG(R) and
KG distributions in approximating GL channel model the
relationship between their parameters is essential. Since, small
scale fading statistics is considered same for both KG(R) and
GL channel models, the fading parameter ‘m’ remains the
same for both the cases. However, the large scale fading PDF
being different for both the models, the relation between their
parameters is established by employing moment matching
method given in [14]. Here, the first and second-order mo-
ments of both log-normal and gamma distributions are equated
which gives the relation between their parameters as

β =
eµ+λ2/2

e2µ+2λ2 −
(
eµ+λ2/2

)2 , ξ =

(
eµ+λ2/2

)2

e2µ+2λ2 −
(
eµ+λ2/2

)2

(14)

B. Formulation of CDF, Moments and MGF

The detailed formulation of CDF, moments and MGF for
the KG(R) distribution is given in this subsection. The above
analytical tools will be used in deriving performance metrics
of fading channel discussed in next subsection.

1) Cumulative distribution function (CDF): For KG(R)

distribution, closed form expression of CDF can be given as

Fγ(γ) =
γ∫
0

fγ(γ)dγ

=
γ∫
0

2
Γ(m)Γ(ξ)

(
mβ
γ̄

)m+ξ
2

γ
m+ξ

2 −1Kξ−m

(
2
√

mβ
γ̄

√
γ
)
dγ

(15)
In (15), Kν [·] can be written in terms of Meijer′s G-function
[15] and can be further simplified by using relation [16, eq.
26] as

Fγ(γ) = 1
Γ(m)Γ(ξ)

(
mβ
γ̄

)m+ξ
2

γ
m+ξ

2

×G2,1
1,3

[
mβ
γ̄ γ

∣∣∣∣ 1− (m+ ξ)/2
ξ−m

2 , m−ξ2 , m+ξ
2

] (16)

where Gm,np,q [·] is the Meijer′s G-function.
2) Moments: The nth order moment associated with KG(R)

distribution can be evaluated as

E[γn] =

∞∫
0

γnfγ(γ) dγ (17)

where E[.] denotes the expectation. Thus, by substituting (12)
in (17) we obtain

E[γn] = 2
Γ(m)Γ(ξ)

(
mβ
γ̄

)m+ξ
2

×
∞∫
0

γ
2n+m+ξ

2 −1Kξ−m

(
2
√

mβ
γ̄

√
γ
)
dγ

(18)

By substituting t =
√
γ and using the integral representation

∞∫
0

tµKν(at)dt = 2µ−1a−µ−1Γ
(

1+µ+ν
2

)
Γ
(

1+µ−ν
2

)
, (18) can

be reduced to its closed form expression given as

E[γn] =
Γ(n+m)Γ(n+ ξ)

Γ(m)Γ(ξ)

(
γ̄

mβ

)n
(19)

3) Moment generating function (MGF): MGF of γ can be
defined by Mγ(s) = E[e−sγ ] . Therefore, MGF of KG(R)

fading channel can be written using (12) as

Mγ(s) =
∞∫
0

e−sγfγ(γ)dγ

= 2
Γ(m)Γ(ξ)

(
mβ
γ̄

)m+ξ
2

×
∞∫
0

e−sγγ
m+ξ

2 −1Kξ−m

(
2
√

mβ
γ̄

√
γ
)
dγ

(20)

This integral can be reduced to its closed form expression
by substituting t =

√
γ and utilizing the identity [13, eq.

(6.643.3)] as follows

Mγ(s) =
(
βm
γ̄s

) ξ+m−1
2

eβm/(2γ̄s)

×W−(ξ+m−1)/2, (ξ−m)/2

(
βm
γ̄s

) (21)

where, Wa,b(·) is the Whittaker function.



C. Performance Metrics

The wireless system design and its performance are highly
influenced by the assumed channel model. Here we present
performance metrics such as outage probability, average SER
and average channel capacity for evaluating an M-ary quadra-
ture amplitude modulation (M-QAM) wireless communication
system.

1) Outage Probability : Outage probability is an essential
performance criterion of communication link used over fading
channel. It is defined as probability that the received SNR is
below a given threshold γth . Hence, the outage probability,
Pout can be expressed as

Pout =

γth∫
0

fγ(γ) dγ = Fγ (γth) (22)

where the closed form expression for Pout can be evaluated
using (16).

2) Average Symbol Error Rate: In this work, we are as-
suming a single user environment. Therefore, possibility of
any interference is neglected here and we concentrate only
on average SER performance. In practice, MGF is used to
evaluate average SER in an accessible manner. In this work,
a square M-QAM signaling scheme is considered where,
M = 2k . By utilizing [1, eq. 9.21], the average SER for
M-QAM is given by

Ps(E) = 4
π

(√
M−1√
M

)
×[

π/2∫
0

Mγ

( gQAM
sin2θ

)
dθ −

(√
M−1√
M

) π/4∫
0

Mγ

( gQAM
sin2θ

)
dθ

]
(23)

where gQAM = 3/(2(M − 1)), q = 1 − 1
/√

M and Mγ (·)
is obtained using (21). The above equation can be further
simplified to its closed form with the use of hypergeometric
function [17, eq. (12)].

3) Average Channel Capacity: According to Shannon′s
theorem, when perfect channel state information (CSI) is
available at receiver, the average channel capacity can be
expressed as

Cavg =
B

ln 2

∞∫
0

ln(1 + γ)fγ(γ) dγ (24)

where B is channel bandwidth. Although the exact solution of
(24) is intractable, an approximate solution obtained in [18],
[19] where, ln(1 + γ) is expanded using Taylor′s series about
E[γ] . The resulting expression is given as

Cavg ≈
B

ln 2

[
ln (1 + E[γ])− E[γ2]− E2[γ]

2 (1 + E[γ]) 2

]
(25)

where E[γn] can be obtained using (19).

IV. CAPACITY ANALYSIS OF REPARAMETRIZED KG

DISTRIBUTED MIMO CHANNEL

In this section, we perform the capacity analysis for MIMO
channel to evaluate the performance KG(R) distribution. Here,

we consider a point to point MIMO system with Nt transmit
and Nr receive antenna. The Nr × Nt composite channel
matrix is modeled as Z = HΞ1/2 where, H ∈ CNr×Nt

and Ξ ∈ CNr×Nt corresponds to small scale and large scale
fading respectively. Individual elements of H are assumed as
independent and identically distributed (i.i.d) random variable
(RV) with uniform phase distribution in [0, 2π) while , the
amplitude x = |hi,j | following a Nakagami-m distribution
as given in (5). Similarly, Ξ is defined by Ξ =

(
σ
Dv

)
INt

where, D is the distance between transmitter and receiver, v
denotes path loss exponent and σ is a gamma distributed RV
σ ∼ Gamma(ξ, β) as given in (9).

A. Average MIMO channel capacity

In this paper, perfect channel state information (CSI) is
assumed to be available at receiver side only that eventually
leads to uniform power allocation across all transmit data
streams. In this aspect, the average capacity of MIMO channel
can be expressed as

Cavg = E
[
log2

(
det
(
INt +

γ̄

Nt
Z†Z

))]
(26)

where, det and (·) † respectively stands for determinant and
Hermitian transpose of a matrix. Here the channel capacity
upper bound of of MIMO KG(R) channel is deduced for the
case Nr > Nt. According to [10], the upper bound for MIMO
average capacity can be given as

Cavg ≤ Cup = E

[
Nt∑
i=1

log2

(
1 +

γ̄

Nt
zi,i

)]
(27)

where, zi,i, i = 1 · · ·Nt are real, non-negative diagonal
elements of Z†Z. It is to be noted that, sum of Nt i.i.d gamma
RV with rate parameter {bi}Nti=1 and a common scale parameter

a, is also a gamma distributed with parameters
(
Nt∑
i=1

1/bi, a

)
.

Thus (27) can be rewritten as

Cup = Nt× E

[
Nt∑
i=1

log2

(
1 +

γ̄

Nt

ση

Dv

)]
(28)

where, η is the sum of Nr i.i.d gamma RV, η ∼
Gamma(mNr, 1/m) given as

f(η) =
ηmNr−1

Γ(mNr)
mmNre−mNr, η > 0 (29)

Thus, (29) can be represented as

Cup =
Nt

ln 2

∞∫
0

∞∫
0

ln
(

1 +
γ̄

Nt

ση

Dv

)
f(σ)f(η)dσdη (30)

By expressing the logarithmic term in terms of Meijer′s G−
function, (30) has the form

Cup =
Nt

ln 2

∞∫
0

∞∫
0

G1,2
2,2

[ γ̄
Nt

ση

Dv

∣∣∣1,11,0

]
f(σ)f(η)dσdη (31)



Applying (9), (29) in (31) and utilizing the integral relation
[13, eq. (7.813.1)], (31) can be expressed in closed form as

Cup =
Nt

Γ(mNr)Γ(ξ) ln 2
G1,4

4,2

[
γ̄

mNtDvβ

∣∣∣1−ξ,1−mNr,1,11,0

]
(32)

B. High SNR Analysis

In the high SNR regime, log(1 + ax) can be approximated
to be log(ax). Thus, using the integration formula [13, eq.
(4.352.1)]

∫∞
0
xa−1e−cx lnxdx = Γ(a)

ca (ψ(a)− ln(c)), the
upper bound can be approximated as

C∞up = Ntlog2

(
γ̄
Nt

)
+ Nt

ln 2 (Ψ(mNr)− ln(m))
+Nt (Ψ(k)/ln 2 + log2(1/β)− vlog2(D))

(33)
where, Ψ(·) is the digamma function.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results to access
the accuracy in approximating the GL model to existing and
the proposed reparametrized KG models. The performance of
4-QAM and 16-QAM systems in terms of outage probability,
average SER and average channel capacity are demonstrated
using GL, KG(R) and KG channel models. Here, we consider
the scenario where the environment experiences average shad-
owing that corresponds to parameters of GL to be λ = 0.161
and µ = −0.115. The parameters of KG(R) and KG models
are evaluated using (14). For all distributions, parameter value
m is set to 5. The SNR distribution of GL, KG(R) and KG
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Fig. 1: Probability density function of GL(exact), KG(R) and
KG model

models are plotted in Fig.1. Clearly, Fig.1 shows that, KG(R)

approximation fits well with GL model as compared to KG

approximation. Apparently, the PDF of KG approximation
deviates significantly towards the lower tail.

The accuracy is also measured by symmetric Kullback-
Leibler (KL) divergence (DKL) [20] defined by

DKL =
∑
γ

fExt(γ) log
fExt(γ)

fApp(γ)
+
∑
γ

fApp(γ) log
fApp(γ)

fExt(γ)

(34)

where fApp(γ) and fExt(γ) are approximated and exact dis-
tribution, respectively. In the given environmental condition,
KL divergence of KG(R) and KG distributions are found to
be 0.1727 and 0.4735 respectively. Thus the lower value of
DKL verifies that, KG(R) model is a better substitute for GL
distribution than KG model.
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Fig. 2: Outage probability versus γ̄ for γth = 5dB, 10dB over
GL(exact), KG(R) and KG fading channel
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Fig. 3: Average SER of 4QAM and 16QAM over GL(exact),
KG(R) and KG fading channel

Fig.2 shows the outage probability with respect to average
SNR γ̄ for different values of threshold SNR γth . As shown
in figure, outage probability of KG(R) distribution is more
analogous to GL distribution as compared to KG model. In
Fig.3 and Fig.4 we have presented average SER and capacity
analysis, respectively. 4-QAM and 16-QAM modulated sym-
bols are considered for transmission to evaluate average SER.
In both Fig.3 and Fig.4, average SER and capacity of KG(R)

distribution are comparable to GL distribution whereas in case
of KG model, there is a certain deviation particularly in higher
values of average SNR. Analytical upper bound and simulated
output for average capacity of KG(R) MIMO channel is
compared in Fig. 5. We also included the simulation result
of GL distribution for comparative analysis. It is observed
that, capacity increases with increase in number of receiving
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Fig. 4: Average channel capacity versus γ̄ over GL(exact),
KG(R) and KG fading channel
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Fig. 5: Average channel capacity versus γ̄ for MIMO KG(R)

channel

antenna and the upper bound becomes more tighter. Moreover,
the high SNR approximation is accurate even for moderate
values of γ̄.

VI. CONCLUSION

In this paper, we have proposed reparametrized KG model
that can be used as substitute for typical KG distribution in
order to approximate GL distribution. At the outset, we derive
expression of SNR distribution for reparametrized KG model
and figure out the characteristic differences. The parameters
of resulting distribution are obtained by moment matching
method for comparative analysis. The accuracy of approx-
imation is evaluated in terms of analytical results obtained
from PDF and CDF expressions. It is found that, the proposed
reparametrized KG model has a better fit to GL model
than the existing KG model. The matching accuracy is also
supported by KL divergence method. In this work, closed form
expressions of performance metrics such as outage probabil-
ity, average SER and capacity are deduced by capitalizing
on the CDF, MGF and moment expressions derived earlier,
respectively. Furthermore, upper bound of average channel
capacity is deduced for MIMO channel. In addition to that,

a simplified expression for high SNR approximation of upper
bound is derived. Finally, experimental results illustrate that
the reparameterized KG model outperforms the existing KG

distribution in approximating GL distribution to model SNR
of wireless channel.
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