Effect of Ni addition on microstructure, mechanical and high temperature behavior of mechanically alloyed W-Nb

P. Meher¹, C. Kiran¹, <u>A. Patra^{1*}</u>, R. Saxena¹, S. K. Karak¹

¹Nanomaterials Research Group, Metallurgical and Materials Engineering Department, National Institute of Technology Rourkela, Rourkela-769008, Odisha, India. *Corresponding Author E-mail: patraa@nitrkl.ac.in

ABSTRACT

The present investigation comprises the fabrication of tungsten (W) based alloys with nominal composition of W₇₀Ni₂₀Nb₁₀ (alloy A), W₇₅Ni₁₅Nb₁₀, (alloy B) (all in wt.%) by mechanical alloying (MA) in a planetary ball mill followed by sintering at 1500°C for 2 h in Ar atmosphere. The milled powders and the consolidated products have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Minimum crystallite size and maximum lattice strain of 45 nm and 0.42% respectively is achieved in alloy B. Maximum sinterability, hardness of 90.5%, 4.58 GPa (at 50g) respectively is achieved in alloy B due to finer crystallite size, higher surface energy and shorter atomic diffusion distance whereas maximum compressive strength of 2.14 GPa and minimum wear rate is achieved in alloy A owing to the formation of higher fraction of hard NbNi intermetallic phase. High temperature oxidation study at 900°C for 10 h reveals that lower oxidation rate is achieved in alloy A owing to lesser weight fraction of W and higher propensity of protective NiWO₄ scale formation.

Keywords: W based alloy; Mechanical alloying; Strength; Oxidation.

Effect of Ni addition on microstructure, mechanical and high temperature behavior of mechanically alloyed W-Nb

International Conference on Nanotechnology : Ideas, Innovations & Initiativies-2017 (ICN: 3I-2017) IIT Roorkee 8th December, 2017

P. Meher, C. Kiran, <u>A. Patra^{*}</u>, R. Saxena, S. K. Karak

Department of Metallurgical and Materials Engineering

NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA ROURKELA-769008, INDIA

BRIEF OUTLINE

- Aims and Objective
- Introduction & Background
- Materials and Method
- Result & Discussions
- Conclusions
- References

Aims and Objective

- To fabricate W based alloys through pressure less **liquid phase sintering**.
- Investigate the physical, mechanical and high temperature behavior of the fabricated alloys.

- Extreme temperature (~1000-1500°C)
- High strain rate (10⁶ s⁻¹) and
- Hydrostatic pressure (2–6 GPa)

A. Upadhyaya, Mater. Chem. Phys. 67 (2001) 101–110.

>Any other application?

- 1. Radiation Shielding
- 2. Aviation counterweights
- 3. High rigidity tooling components

Die & Punch

Radiation Shielding

Aviation counterweights

>Why Tungsten?

Pros.

- High Melting point (3420^oC).
- High hardness (9.8 GPa), MOE=407 GPa.
- Good thermal conductivity (1.74 W/cm K), low co-efficient of thermal expansion.
- Low-activating metal in radiation environment with low sputtering yield.
 (W.F. Smith, McGraw-Hill, 1993)

Cons.. with Tungsten

High ductile brittle transition temperature (200-500°C). (J. L. Johnson, Sintering of refractory metals, Woodhead Publishing, Cambridge (UK) 2010, pp. 357–380).

> Why alloy addition ?

- To Improve fabricability and effective utilization of Tungsten.
- Ni imparts liquid phase sintering (if sintering temp is higher than m.p. of Ni) and improve plastic flow properties.
- To improve the high temperature strength and lower the DBTT of W by Nb addition.

A. Patra et al., Int. J. Refract. Met. Hard Mater 60 (2016) 131–146

G. D. Samolyuk et. al Fusion Reactor Materials Program (2011)

Binary alloy phase diagrams of (a) W-Nb [P. Franke et al. 2006], (b) W-Ni [T. B. Massalski et al. 1990]

>Why Nanostructuring ?

- To lower the sintering temperature.
 (R malewar *et.al, J. Mater. Res., 22 (2007*)
 - To improve the mechanical properties.
 [H. Glieter, Acta. Mater., 48 (2000)]

Materials & Methods

Mechanical Alloying

Mechanism of MA

- **FRISTSCH** planetary ball mill, steel vials and 10 mm chrome steel balls
- 300 rpm, 10:1 (ball to powder weight). Wet milling with toluene (Process control agent to prevent particle agglomeration)

Compaction 500 MPa pressure 5 min dwell time (a) Conventional Sintering Furnace (1500°C for 2 h) (Ar flow rate : 100 ml/min) (b) Conventional Sintering Cycle

W and Nb : unlimited solid solubility (similar crystal structure (BCC) and small difference between atomic radius (W: 193 pm, Nb: 198 pm)

W and Ni : limited solid solubility (different crystal structure (Ni : FCC) and wide difference between atomic radius (W: 193 pm, Ni: 149 pm)

XRD pattern of alloy B mechanically alloyed at various time (0, 5, 10, 20 h).

Variation of crystallite size and lattice strain of alloy A and alloy B with milling time

$$\beta \cos \theta = \frac{0.94\lambda}{D} + 4\eta \sin \theta,$$

where, β is the full width half maxima (FWHM), D is the crystallite size and η is the lattice strain.

b is the burgers vector of dislocations, $b = (a\sqrt{3})/2$ for the bcc structure, a = cell parameter = lattice parameter, D = crystallite size, $\varepsilon =$ lattice strain U = 0

16

SEM micrograph of powder of alloy B at (a) 0 h, (b) 5 h, (c) 10 h and (d) 20 h of mechanical alloying.

Particle size distribution of 20 h milled alloy A and alloy B.

Enhanced Bimodality represent superior particle packing during compaction.

Peak Shift in (110) diffraction plane of 20 h milled W to higher angle in sintered alloys (alloy A: from 40.29° to 46.97°, alloy B: from 40.31° to 47.20°)

XRD pattern of alloy A and alloy B mechanically alloyed for 20 h and sintered at 1500°C for 2 h.

SEM micrograph of sintered (a) alloy A, (b) alloy B

$$\rho_{s} = \frac{W_{a}}{\left(W_{sat} - W_{susp}\right)} X \rho_{w} \frac{gm}{cm^{3}}$$

 W_a is weight of the sintered sample in air. W_{sat} is the weight of the sample with all the open porosity saturated with water,

 W_{susp} is the weight suspended in water. ρ_w is the density of water.

Alloy	Dry Weight (gm)	Soaked Weight (gm)	Suspended Weight (gm)	Theoretical Density (gm/cm ³)	Sintered Density (gm/cm ³)	%Sinterability
Α	2.07	2.08	1.92	14.82	12.94	87.31
B	1.67	1.69	1.56	14.19	12.85	90.56

- > Superior particle bimodality in 20 h milled powder of alloy B.
- > Low crystallite size \rightarrow enhanced surface energy \rightarrow improved mass transport

- Enhanced density, Finer microstructure
- Smaller indentation at reduced loads (ISE)
- Stress field-dislocation core interaction

$$HV = 1.8544 \frac{P}{d^2}$$
 22

(strain rate: 10⁻¹/min)

Higher hard brittle NbNi in alloy A. (high strength-low %strain to failure) than alloy A

True- stress- strain curve under Compressive loading

A. Patra et al. , Int. J. Refract. Met. Hard Mater 60 (2016) 131–146

Fractographic study of (a) alloy A and (b) alloy B

Higher fraction of hard NbNi particles strongly restrict the dislocation motion which results in lower wear depth in alloy A

Sliding Distance (S. D) = $\left(\frac{N}{60}\right) \times t \times 2\pi r$

Test condition : 30 N load, 25 rpm, track diameter : 4 mm, time : 10 min.

SEM micrograph of wear track of (a) alloy A, (b) alloy B milled for 20 h and sintered at 1500°C for 2 h at 30 N load.

Weight change with exposure time of alloy A and alloy B during oxidation in furnace, (b) XRD pattern of alloys A and alloy B subjected to oxidation at 900°C for 10 h.

$$\left(\frac{\Delta m}{A}\right)^2 = \mathrm{Kt} + \mathrm{C}$$

A. Patra et al. , Int. J. Refract. Met. Hard Mater 70 (2018) 134-154.

Oxides	ΔG_{f}° (KJ mol ⁻¹)
WO ₃	- 349.3
Nb ₂ O ₅	- 539.5
TiO ₂	-688.69
NiO	-192.2

Molar volume of $WO_{3,}WO_{2,}Nb_2O_5$ is 31.76 cm³, 19.57 cm³, 58.30 cm³ respectively whereas the molar volume of impervious NiWO₄ is 38.56 cm³ ²⁸

Conclusions

- Nanostructured novel W-Ni-Nb alloy powders are produced by mechanical alloying. Minimum crystallite size of W and maximum lattice strain is achieved in W₇₅Ni₁₅Nb₁₀ alloy at 20 h of milling.
- The lattice parameter of W in all alloys expanded at 10 h of milling due to hydrostatic pressure exerted by the nanocrystals and contraction at 20 h of milling owing to formation of solid solution.
- Presence of NbNi intermetallic is evident in the sintered alloys due to Ni rich liquid phase formation at the selected sintering temperature.
- The % densification and hardness of W₇₅Ni₁₅Nb₁₀ alloy is higher as compared to W₇₀Ni₂₀Nb₁₀ alloy.
- W₇₀Ni₂₀Nb₁₀ shows higher strength and low % strain to failure as compared to W₇₅Ni₁₅Nb₁₀.

Conclusions

• Minimum wear depth is recorded in alloy A due to higher presence of NbNi intermetallic phase.

• High temperature oxidation behavior shows superior oxidation resistance of $W_{70}Ni_{20}Nb_{10}$ alloy as compared to $W_{75}Ni_{15}Nb_{10}$ due to lower W content and quick formation of more stable and impervious NiWO₄ oxide scale.

