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Abstract 

Unwanted vibration in machine tools like lathe, milling, grinding and other machine tools is one of the elementary problems as it affects 

the quality of the machined parts, tool life, and noise during machining operations. Particularly, in boring operation, the vibrations 

induced are the primary concern in the manufacturing industries. Hence, these unwanted vibrations are desired to be suppressed or 

damped out while machining. In present work, the damping ratios and natural frequencies of the boring bar vibrations have been 

estimated during boring operation with different composites such as Glass Fiber Reinforced Polyester (GFRP) and Glass Fiber Reinforced 

Epoxy (GFRE) on the tool post. It has been observed that GFRE composite gives good results compared to other composites. Further, the 

Fast Fourier Transform (FFT) technique has been utilized to find out the values of spectral power density and magnitude for various 

combinations of composites. 
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1. INTRODUCTION 

Present manufacturing industries are facing challenges in 

producing more accurate and precise products as there is a lot 

of vibrations generated by the cutting tool during the machining 

operation. Boring is one such machining operation in which 

pre-drilled holes are enlarged. Usually, the boring bar is the 

weakest section of the tool clamping system in the lathe 

machine. The movement of the boring bar may vary with time. 

A long and slender boring bar is more sensitive to the excitation 

brought in by the material deformation which is caused by the 

machining process. Dynamic motion, i.e. vibration is the result 

of workpiece deformation. This vibration affects the surface 

finish of the workpiece as well as tool life during the boring 

process. The work surface produced should be better surface 

finish, since boring is semi finishing operation. Hence, the 

induced vibrations must be suppressed to improve the machined 

surface. These vibrations in the machine tool are depreciated by 

using the passive dampers. 

Bert and Nashif [1, 2] have investigated the fiber reinforced 

composites to minimise the vibration, and they found that fiber 

reinforced composites exhibit more damping compared to 

metallic structural materials. Lazan [3] has extensively studied 

the material damping and concluded that the dynamic stresses 

are directly related to logarithmic decrement value. Haranath et 

al. [4] analyzed the machine tool structures dynamically and 

observed enhanced damping parameters. Rivin et al. [5] have 

worked on the boring bar with large slenderness ratio and found 

the redesigned tool with viscoelastic layers has improved 

stability, stiffness and damping. Ema et al. [6] studied the effect 

of shear deformation on natural frequency in the transverse 

direction as well as loss factor using finite element analysis and 

observed an improvement in damping capacity of the boring bar 

with the use of impact dampers. Rahman et al. [7] used several 

materials to study the damping in machine tools and noted that 

composite materials have an excellent stiffness. Hence it is a 

better replacement for the cast iron to get the improved surface 

finish of the product. 

Various techniques are used to measure a material damping 

properties, but the accurate estimation of these parameters is 

complicated. These are used to formulate an analytical model 

describing the input-output relationship of the system. The 

standard method of measuring system’s response is by Fourier 

analysis. Nagarajaiah [8] developed time frequency algorithms 

to identify these parameters and control a multi degree freedom 

system (MDOF) response with smart tuned mass dampers 

(STMD) using short time Fourier transforms. However, it is not 

possible to study the time varying characteristics of the signal in 

Fourier transform. Because of this, Newland [9] developed 

wavelet transform technique as a signal processing tool for 

estimating the damping properties. Chui [10] used long and 

short windows at low and high frequencies respectively. This 

decomposition assists in monitoring discontinuities and 

transient behavior of signals. Kijewski et al. [11] and Slavic et 

al. [12] have adopted various techniques of improvement of 

parameters using Morlet wavelet transform. Dziedziech et al. 

[13] presented a method to estimate damping, natural frequency 

and mode shapes utilizing signal post processing and random 

input excitation based on Crazy Climbers algorithm. Sahekhaini 

et al. [14] suggested an algorithm for modal parameter 

estimation and damage detection using complex Morlet wavelet 

and natural frequencies of the system are identified by using 

wavelet transform. All these studies authenticate that wavelet 

transform is an advanced technique for signal processing 

compared to other methods 

In this paper, GFRE and GFRP composites are used as passive 

dampers and placed under the boring bar to reduce the 

vibrations induced during boring operation. The damping 

parameters such as damping ratios and natural frequencies are 

estimated using experimental and validated by wavelet 

transform method. 

2. WAVELET TRANSFORM METHOD  

A single-degree of freedom system is utilized for stability 

analysis of the cutting process in boring operation. Either the 

workpiece or tool being weak in stiffness in the orthogonal 

direction is considered. We assumed the system as the single 

degree of freedom (s-dof) self-excited linear time-invariant 

vibration system since the boring bar is the weakest member in 

the tool clamping system. Consider a body of mass m is 

connected to a spring and viscous damper to a fixed support, 

which produces self-excited vibrations, the equation of motion 

of the body is expressed as:  

0kxxcxm          (1) 

where x is the displacement of a mass m, c  and k are the 

damping coefficient and stiffness respectively. 

The Eq. (1) is expressed in terms of natural frequency n and 

damping ratio   as: 
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The solution of the above equation is expressed by: 
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where 0x  and  depend on initial boundary condition, and 

21   nd is the damped natural frequency. 

The Morlet wavelet in time domain can be defined as: 
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where, o  is central frequency and   is bandwidth parameter. 

Eq. (4) must satisfy the following conditions: 
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The Morlet wavelet transform can be expressed as:  
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where,  tx is original signal and   is complex conjugate of 

mother wavelet. 
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 , the wavelet transform of the system 

response defined in Eq. (7) is transformed to: 
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Substituting Eq. (4) in Eq. (8) and the cosine function is 

expressed as an exponential function, we obtain 
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substituting the solutions of Eqs. (10) to (13) in Eq. (9), we 

obtain 
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Since the value of 1o , the value
aai dodoe

 
becomes 

very small and Eq. (15) is modified as: 
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By fixing the scaling factor oaa   and varying translation b, we 

obtain 
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where 
1c  and 

2c  are independent of the translation, b, and 

are given by: 
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Now it is evident that the damping ratio   and natural 

frequency n  can be estimated from Eqs. 17 and 18.  

Slope of  baW ,ln 0  Vs.   = n  and    (19) 

Slope of  baW ,0  Vs. b= 21  n    (20) 

Eqs. (19) and (20) hold good for any fixed a and any range of b. 

In general, it is noted that the free response of the system given 

in Eq. (3) is valid only for a positive time, and   0tx , 0t . 

Further, it is observed that the wavelet transform works as a 

window in time and frequency domains for given a and b. Thus, 

the derivation is not authentic if b being too small. Usually, the 

output signal is contaminated with noise, which affects the 

results. Hence, the wavelet transform of a practical response is 

given by: 
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represents the practical response and  baW n , is 

the noise. Proper selection of ao and b values will give better 

results to satisfy the following condition. 
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This indicates that the contribution from noise is negligible. 

Hence, the mother wavelet and Morlet wavelet transform 

chosen in Eq.s (4) and (7) respectively are suitable for the 

analysis of boring bar undergoing vibrations. 

3. EXPERIMETNAL DETAILS 

3.1 Setup and Procedure 

The experimental setup mainly consists of a conventional lathe, 

boring bar with inserts, and workpiece of mild steel, composite 

plates, contact type accelerometer and digital storage 

oscilloscope. Figures 1 and 2 show the geometry of the cutting 

insert and schematic diagram of the experimental setup. Table 1 
represents the dimensions of the cutting tool insert. 

 

Fig. 1: Geometry of the cutting insert 

Table 1: Dimensions of the insert shown in geometry 

Insert type D L10 S RƐ D1 

CCMT09T308-
MU TN2000 

9.53 9.67 3.97 0.8 4.40 

 
Fig. 2: Schematic diagram of experimental setup 

A carbide insert is fixed to the boring bar and mounted on tool 

post of the lathe. Now, a workpiece of mild steel is held in the 

chuck. An accelerometer is connected to the boring bar in the 

cutting speed direction to measure the vibrations during 

machining. These signals are fed to the oscilloscope from the 

accelerometer for recording and further analysis. The RMS 

value of the signals, damping ratio and natural frequency are 

estimated using the recorded data. The experiments are repeated 

by placing different composites, i.e. Glass Fiber Reinforced 

Epoxy (GFRE) and Glass Fiber Reinforced Polyester (GFRP) 

under the tool. Further, the surface roughness of the machined 

part is measured using Taylor Hobson Talysurf tester. Then 

after, readings are attained at three locations along the 

workpiece length, and the average of them is determined. The 

machining parameters of various level used in boring operation 

are given in Table 2. Cutting speed and feed determines the 

surface finish, power requirements, and material removal rate. 

The primary factor in choosing feed and speed is the material to 

be cut. However, one should also consider material of the tool, 

rigidity of the workpiece, size and condition of the lathe, and 

depth of cut. Here the workpiece material is mild steel and tool 

of carbide insert. Since boring is the finishing operation the 

surface finish produced to be more accurate and hence the 

speed and feed should be as low as possible. The temperature 

developed during machining will be more if the speed and feed 

are more and result in poor surface finish. The optimum speed 

to bore a diameter of 30 mm is in between 90 rpm and 250 rpm 

and feed is about 0.1 to 0.3 mm/rev. Hence we selected the 

parameters as shown in Table 2. 



Table 2: Machining Parameters Used in Boring Operation 

Process Parameter Level-1 Level-2 Level-3 

Speed (rpm) 92 140 220 

Feed (mm/rev) 0.1 0.2 0.3 

Depth of cut (mm) 0.1 0.2 0.3 

3.2 Design Matrix 

A three-factor three-level Box-Behnken design (BBD) with 

three center points and a single block is generated from the 

design of experiments. Table-3 represents the experimental 

results of vibration amplitude and surface roughness. 

3.3 Estimation of Damping Parameters 

The damping in the domain of time is estimated by using 

logarithmic decrement method. The displacement of vibration 

amplitude of the system is measured and recorded in this 

method. Figure 3 shows logarithmic decrement plot. 

Logarithmic decrement is defined as the natural logarithmic of 

the ratio of any two successive peak amplitudes. 

Logarithmic decrement is used to determine the damping ratio 

of an underdamped system in the time domain, which is given 

below: 
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Table 3: Experimental Results of Vibration Amplitude and Surface Roughness 

Machining Parameters No Composite GFRP GFRE 

v f d A Ra A Ra A Ra 

140 0.1 0.1 140.64 6.1 133.51 5.54 89.85 5.13 

220 0.3 0.2 252.63 12.5 227.15 12.07 167.18 11.13 

220 0.2 0.1 206.89 11.02 234.85 9.03 166.5 7.87 

140 0.3 0.1 144.18 11.83 144.95 10.03 122.16 8.67 

220 0.1 0.2 199.13 8.93 334.86 5.03 211.74 5.1 

92 0.1 0.2 121.74 5.83 162.8 8.57 47.06 7.6 

92 0.2 0.1 109.14 10.03 71.71 7.83 59.17 8.87 

140 0.2 0.2 238.42 12.47 169.41 12.2 128.61 11.47 

140 0.1 0.3 241.07 12.03 236.22 9.03 176.95 7.6 

140 0.3 0.3 243.85 13.67 180.61 11.87 153.2 11.47 

220 0.2 0.3 239.94 14.1 248.04 11.47 277.65 10.2 

140 0.2 0.2 239.99 13.03 176.75 10.87 140.06 9.33 

140 0.2 0.2 265.54 11.8 176.75 9.2 120.95 10.8 

92 0.3 0.2 156.98 13.01 129.95 11.27 101.57 11.2 

92 0.2 0.3 190.012 12.33 129.92 11.93 86.01 9.17 

v-speed, rpm; f-feed, mm/rev; d-depth of cut, mm; A-amplitude; Ra-Surface roughness; 

GFRP-Glass Fiber Reinforced Polyester; GFRE-Glass Fiber Reinforced Epoxy; 

 

where x(t) is amplitude at time t and x(t+nt) is the amplitude of 

peak n period, where n is any integer number of successive, 

positive peaks. 

 

Fig. 3: Logarithmic decrement plot 

Thus, the damping ratio is determined from logarithmic 

decrement using the expression given below: 
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Further, the value of damping ratio is used to find the natural 

frequency n of the system from damped natural 

frequency d : 
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where T is the period of the waveform, which is given by the 

time elapsed between two adjacent peaks of amplitudes for 

under damped system. 

The logarithmic decrement method becomes less and less 

precise as the damping ratio increases past above 0.5. This 

method is not applied to a system which is having the damping 

ratio greater than 1.0 since the system is over damped. 

4. RESULTS AND DISCUSSIONS 

The damping parameters of boring bar vibrations using various 

composites such as GFRE, GFRP are estimated experimentally 

and are validated using wavelet transform method. The results 

obtained by the wavelet transform method are given below. 

4.1 Estimation of Damping Parameters Using Wavelet 

Transform Method 

The Morlet wavelet transform of single degree of freedom 

linear vibrations with central frequency, 0  at 10 rad/s is shown 

in Figure 4 which clearly indicates that there is a maximum 

peak of scaling parameters at 40 sec. 

The corresponding logarithmic modulus and phase are plotted 

with translation parameter as shown in Figures 5 and 6 

respectively for GFRE composite. It is observed that there 

exists a linear relationship between the plots, i.e. logarithmic 

modulus vs. translation parameter and phase vs. translation 

parameter for a smaller range of positive values i.e., 0 and 5. 

The slopes of logarithmic modulus and phase plots are obtained 

with the help of interpolate method using curve fitting software. 

Then, damping ratios and natural frequencies are estimated 

using Eqs. (19) and (20). 

 

 



Table 4: Results from both experimental and wavelet analyses 

Type of composite      Error in   (%) n  (rad/s) n  (rad/s) Error in n  (%) 

Without Composite 0.00039 0.000397 1.898409 64.1534 64.15 -0.00530 

GFRP 0.0012 0.001238 3.166667 64.8086 64.81 0.00216 

GFRE 0.0018 0.001831 1.722222 63.9056 63.9101 0.00704 

 
Fig. 4: Morlet Wavelet Transform of boring bar vibrations 

composite 

 

Fig. 5: Logarthemic modulus Vs translation plot for GFRE 

 

Fig. 6: Phase vs translation plot for GFRE composite 

From table 4, it is noticed that the damping ratios are increased 

with the use of GFRE compared to GFRP and without 

composite. This is mainly due to GFRE is more viscoelastic in 

nature compared to GFRP. Hence, GFRE composites dissipate 

more energy compared to GFRP. Similarly, the natural 

frequencies are decreased with the use of GFRE compared to 

GFRP and without composite. The values of damping ratios and 

natural frequencies obtained from the experimental as well as 

wavelet analysis are presented in Table-4 for different 

composites. Also the percentage errors are calculated and 

observed that the error in damping ratios and natural 

frequencies are less than 4% and 1% respectively, which is 

reasonable. Particularly in case of without composites the 

negative error in natural frequency represents the harmonic 

motion of the tool vibration in negative direction. From Table-

4, it is noticed that the damping ratio is more in case of GFRE 

composite compared to other conditions. Thus, GFRE 

composites are best suitable dampers given in present paper to 

suppress the vibrations. 

The Fast Fourier Transform is employed to find out the spectral 

power density and magnitude spectrum from the recorded 

signals during experimentation. Fig. 7 shows the FFT of the 

vibration signal for GFRE composite at optimal parameter 

setting. The results of FFT for various composites are presented 

in Table 5 and observed that the value of spectral power density 

and magnitude spectrum are very small for GFRE composites 

compared to other. 

 

 

 

Fig. 7: FFT of recorded signal for GFRE composite 

Table 4: Results from Fast Fourier Transform 

Type of Composite 

FFT 

Spectral Power 
Density (W/Hz) 

Magnitude of 
Amplitude (mV) 

Without composite 8.87x10-11 6.65x10-6 

GFRP 6x10-11 6.52x10-6 

GFRE  3.23x10-11 3.42x10-6 

5. CONCLUSIONS 

The wavelet transform method has been employed to identify 

and calculate the damping ratio and natural frequency for 

different composites. From the analysis, it has been determined 

that the validation of the relationship between wavelet and 

experimental results depend on the translation, scaling and the 

central frequency of the Morlet wavelet. Therefore, the 

accuracy of parameter identification depends on a, b and o . 

Numerical simulations show that the errors obtained for 

damping ratio and natural frequency are less than 4% and 1% 

respectively for the boring bar with various composites. Since 

the percentage error of damping ratios and natural frequencies 

are very small, the results are reasonable and the analysis is 

authentic. 

Further, the Fast Fourier Transform is applied to find out the 

spectral power density and magnitude from recorded signals 

during experimentation. It has been observed that GFRE 

composite gives better results compared to other composites. 

The values obtained from the FFT magnitude and spectral 

power densities are 3.42x10-6 mV and 3.23x10-11 W/Hz 

respectively for GFRE composite. 
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