ALMOST BALANCING-LIKE SEQUENCES

Gopal Krishna Panda

Department of Mathematics

National Institute Of Technology

Rourkela-769 008

Odisha, India

E-mail: gkpanda_nit@rediffmail.com

Introduction

The class of linear binary recurrences

$$
x_{n+1} = Ax_n - x_{n-1}
$$

with initial terms $x_0 = 0, x_1 = 1$ are important in the sense that the case $A = 2$, refers to natural numbers. The sequence of balancing numbers is a special case of this class of this class corresponding to $A = 6$. The sequences generated from this class of binary recurrences are all strong divisibility sequence and satisfy many properties resembling those of balancing numbers. This class of sequence with $A > 2$ are known as balancing-like sequences and like natural numbers, each balancing-like sequence admits the definition of triangular-like numbers.

Introduction

The n^{th} triangular number is equal to the sum of first \boldsymbol{n} natural numbers and is also half the product of n and $n + 1$. However, in case of balancing-like numbers, the n^{th} triangular-like number is defined as the product of the n^{th} and $(n + 1)$ st balancing-like numbers divided by A. But unlike natural numbers, the difference of n^{th} and $(n-1)^{\text{st}}$ triangular-like numbers is not equal to the n^{th} term of the same balancing-like sequence, rather, it is equal to the n^{th} term of another balancing-like sequence defined by

$$
x_{n+1} = (A^2 - 2)x_n - x_{n-1}
$$

with initial terms $x_0 = 0, x_1 = 1$. There are numerous mysteries and possibilities associated with the balancing-like and associated sequences. This presentation is devoted to the study of the almost balancing-like sequences associated with the balancing-like sequences.

Balancing numbers \bm{B} and balancers \bm{R} are solutions of the Diophantine equation

 $1 + 2 + \cdots + (B - 1) = (B + 1) + (B + 2) + \cdots + (B + R).$

Thus, 6, 35 and 204 are the first three balancing numbers with balancers $2, 14$ and 84 respectively.

The definition of balancing numbers is due to Behera and Panda: *On the square roots of triangular numbers***, Fib. Quart., 37(1999), 98-205.**

The concept of balancing numbers also coincides with the concept of numerical centers described in a paper by R. Finkelstein, *The house problem***, Amer. Math. Monthly, 72, 1965.** A natural number n is a balancing number if and only if $8n^2 + 1$ is a perfect square.

$$
8 \cdot 6^2 + 1 = 17^2
$$

$$
8 \cdot 35^2 + 1 = 99^2
$$

$$
8 \cdot 204^2 + 1 = 577^2
$$

Since

```
8 \cdot 1^2 + 1 = 3^2,
```
1 is accepted as the first balancing number, though it does not satisfy the defining equation of balancing numbers.

If \bm{B} is a balancing number, then the next one is

$$
3B + \sqrt{8B^2 + 1}
$$

and the previous one is

$$
3B - \sqrt{8B^2 + 1}.
$$

The $\boldsymbol{n^{th}}$ balancing number is denoted by $\boldsymbol{B}_{\boldsymbol{n}}$.

The number

$$
C_n = \sqrt{8B_n^2 + 1}
$$

is called the $\boldsymbol{n^{th}}$ Lucas-balancing number.

BALANCING NUMBERS

Balancing numbers satisfy

$$
B_{n+1}=6B_n-B_{n-1}; B_1=1, B_2=6.
$$

Lucas-balancing numbers satisfy

$$
C_{n+1}=6C_n-C_{n-1}; C_1=3, B_2=17.
$$

Their Binet forms are

$$
B_n=\frac{{\lambda_1}^n-{\lambda_2}^n}{4\sqrt{2}}\,,
$$

and

$$
C_n=\frac{{\lambda_1}^n+{\lambda_2}^n}{2},
$$

respectively, where $\lambda_1 = 3 + 2\sqrt{2}$, $\lambda_2 = 3 - 2\sqrt{2}$.

Recurrence Relation (Non-linear)

$$
B_n^2 = 1 + B_{n-1} \cdot B_{n+1}
$$

Equivalently,

$$
(B_n - 1)(B_n + 1) = B_{n-1} \cdot B_{n+1}
$$

which is looking more natural. In general, the balancing numbers satisfy

$$
B_{m-n} \cdot B_{m+n} = (B_m - B_n)(B_m + B_n).
$$

= $B_m^2 - B_n^2$

The Fibonacci numbers satisfy

$$
F_{m-n} \cdot F_{m+n} = F_m^2 - (-1)^{m+n} F_n^2
$$

which is not so natural like the one for balancing numbers.

Balancing Numbers

Balancing numbers behave like natural numbers:

$$
B_1 + B_3 + \cdots + B_{2n-1} = B_n^{2}
$$

$$
B_2+B_4+\cdots+B_{2n}=B_n\cdot B_{n+1}.
$$

The Fibonacci numbers do not have such type of properties.

De-Moivre's theorem for balancing numbers:

$$
(C_1 \pm \sqrt{8}B_1)^n = C_n \pm \sqrt{8}B_n
$$

More generally,

$$
\left(C_m \pm \sqrt{8}B_m\right)^n = C_{mn} \pm \sqrt{8}B_{mn}
$$

Also,

$$
(C_m \pm \sqrt{8}B_m)(C_n \pm \sqrt{8}B_n) = (C_m C_n \pm \sqrt{8}B_m B_n)
$$

Balancing Numbers

The identity

$$
B_{m\pm n} = B_m C_n \pm C_m B_n
$$

resembles the trigonometric identity

$$
\sin (x \pm y) = \sin x \cos y \pm \cos x \sin y
$$

The corresponding Fibonacci identity is

$$
F_{m\pm n}=\frac{1}{2}[F_mL_n\pm L_mF_n].
$$

Like Fibonacci numbers, the sequence of balancing numbers is a strong divisibility sequence.

$$
(B_m, B_n) = B_{(m,n)}
$$

where (m, n) denotes the greatest common divisor of m and n .

Balancing–like Sequences

A balancing-like sequence is a recurrence sequence defined as

 $x_{n+1} = Ax_n - x_{n-1}$; $x_0 = 0, x_1 = 1$

where $A > 2$ is any natural number. If $A = 6$, this sequence coincides with the sequence of balancing numbers. Each balancing-like sequence satisfies all important properties of the balancing numbers. However, balancing-like sequences do not have defining Diophantine equations like balancing numbers.

Balancing-like sequences

Sum formulas

where

$$
x_1 + x_3 + \dots + x_{2n-1} = x_n^{2}
$$

$$
x_2 + x_4 + \dots + x_{2n} = x_n \cdot x_{n+1}
$$

If A^2-4 is not a perfect square then

$$
x_{m+n} = x_m y_n + y_m x_n
$$

$$
y_n = \sqrt{Dx_n^2 + 1}, \qquad D = \frac{A^2 - 4}{4}
$$

G.K. Panda, National Institute of Technology Rourkela, Odisha, India 13
Technology Rourkela, Odisha, India 13 The Lucas-balancing-like sequence $\{y_n\}$ associated with the balancing-like sequence $\{x_n\}$ defined as

$$
y_n = \sqrt{Dx_n^2 + 1},
$$
 $D = \frac{A^2 - 4}{4}$

is an integer sequence if n is even and satisfies the recurrence relation

$$
y_{n+1} = Ay_n - y_{n-1}
$$
; $y_0 = 1$, $y_1 = \frac{A}{2}$

identical with the recurrence relation of the sequence $\{x_n\}$.

Balancing-like sequences

Like the Fibonacci and balancing sequence, each balancing-like sequence satisfies the strong divisibility property

 $(x_m, x_n) = x_{(m,n)}$

where (m, n) denotes the greatest common divisor of m and n.

In addition,

$$
x_{m-n} \cdot x_{m+n} = (x_m - x_n)(x_m + x_n)
$$

Also, the De-Moivre's theorem holds.

$$
(y_1 \pm \sqrt{D}x_1)^n = y_n \pm \sqrt{D}x_n
$$

More generally,

$$
\left(y_m \pm \sqrt{D} x_m\right)^n = y_{mn} \pm \sqrt{D} x_{mn}.
$$

Also,

$$
(\mathbf{y}_m \pm \sqrt{\mathbf{D}}\mathbf{x}_m)(\mathbf{y}_n \pm \sqrt{\mathbf{D}}\mathbf{x}_n) = (\mathbf{y}_m\mathbf{y}_n \pm \sqrt{\mathbf{D}}\mathbf{x}_m\mathbf{x}_n).
$$

Almost Balancing Sequences

A natural number is called an **almost balancing number**

if it satisfies the Diophantine equation

 $\left| \left\{ \left(n+1\right) + \left(n+2\right) + \cdots + \left(n+r\right) \right\} \right|$

If $\{(n + 1) + (n + 2) + \cdots + (n + r)\}$ – $\{1 + 2 + \cdots + (n-1)\} = 1$,

we call *n* an **almost balancing number of first kind (** A_1 -balancing *numbers*) while if

 $\{(n + 1) + (n + 2) + \cdots + (n + r)\} - \{1 + 2 + \cdots + (n - 1)\}$ $=-1$

we call n an **almost balancing number of second kind** $(A_2$ *balancing numbers*). In the former case, we call r an **almost balancer of first kind**, while in the latter case we call r an **almost balancer of second kind**.

If x is an A_1 -balancing number, then $\mathbf{8} x^2 + \mathbf{9}$ is a perfect square while if x is an A_2 -balancing number then $\mathbf{8} x^2 -$ 7 is a perfect square. Using the theory of Pell's equation, it is easy to see that the A_1 -balancing numbers are given by

 $u_n = 3B_n, n = 1, 2, \cdots$

while the A_2 -balancing numbers partition in following two classes:

$$
v_n = B_n - 2B_{n-1}
$$

and

$$
w_n=2B_n-B_{n-1}, n=1,2,\cdots.
$$

Further relationships

7

- If x is a balancing number then $\alpha(x) = -5x + 2\sqrt{8x^2 + 1}$ and $\beta(x) = -x + \sqrt{8x^2 + 1}$ are A_2 -balancing numbers.
- If x is an A_2 -balancing number then either $\frac{\sqrt{8x^2-7}+x}{7}$ 7 or $\overline{8x^2-7}-x$ is a balancing number*.*
- If *x* is an A_2 -balancing number then either $f(x) =$ $5x+2\sqrt{8x^2-7}$ 7 $or g(x) =$ $x+\sqrt{8x^2-7}$ 7 is a balancing number*.*
- If x is an A_2 -balancing number then either $\frac{11x+3\sqrt{8x^2-7}}{7}$ 7 or

 $9x+2\sqrt{8x^2-7}$ $\frac{7}{7}$ is the A_2 -balancing number next to *x*.

is a **balancing number** iff

 $1 + 2 + \cdots + (x - 1) = (x + 1) + \cdots + (x + r)$

is an **almost balancing number** iff

 $1 + 2 + \cdots + (x - 1) \pm 1 = (x + 1) + \cdots + (x + r)$

Also,

is a **balancing number** iff

 $8x^2 + 1 = \Box$, a perfect square

is an **almost balancing number** iff

 $\mathbf{8}(x^2 \pm 1) + \mathbf{1} = \Box$, a perfect square

Almost balancing numbers

The balancing numbers B_n can be recurrently defined as

$$
x_{n+1} = 6x_n - x_{n-1}; \ x_0 = 0, x_1 = 1
$$

The **balancing-like numbers** x_n are defined as (for fixed $A > 2$)

$$
x_{n+1} = Ax_n - x_{n-1}; \ x_0 = 0, x_1 = 1
$$

Also, x is a balancing number iff

$$
8x^2 + 1 = \square
$$
, a perfect square

 \boldsymbol{x} is a balancing-like number iff

$$
Dx^2+1=\Box, a\ perfect\ square
$$

with
$$
D = \frac{A^2 - 4}{4}
$$
.

Almost balancing numbers

Generalization from almost balancing to almost balancing-like numbers:

is an *almost balancing number* iff

 $\mathbf{8}(x^2 \pm 1) + \mathbf{1} = \Box$, a perfect square

This suggests us to define

is an *almost balancing-like number* iff

$$
D(x^2 \pm 1) + 1 = \square
$$
, a perfect square

Definition: For a fixed natural number $A > 2$, we call a natural number x an *almost balancing-like number* if and only if $D(x^2 \pm 1) + 1$ is a perfect rational square. Similar to the case of almost balancing numbers, we call x an A_1 -almost balancing-like number if $\bm{D}(\ \bm{x^2} + \bm{x^3})$

Case I: A is even. In this case \boldsymbol{D} is a natural number. If \boldsymbol{x} is an A_1 -balancing-like number then $\bm{D} \bm{x^2} + \bm{D} + \bm{1}$ is a perfect square say $\bm{Dx^2} + \bm{D} + \bm{1} = \bm{y^2}$ and this equation can be rewritten as

$$
y^2 - Dx^2 = D + 1 = \frac{A^2}{4}
$$

which is a generalized Pell's equation. Similarly, if x is an A_2 -balancing-like number then $\bm{D} \bm{x}^{\mathbf{2}} - \bm{D} + \bm{1} = \bm{y^2}$ can be rewritten as the generalized Pell's equation

$$
y^2-Dx^2=-D+1.
$$

Case II: A is odd. In this case D is a rational number, an integral multiple of $\frac{1}{2}$. If x is an A_1 -balancing-like number then $\boldsymbol{4}\big(\boldsymbol{D} \boldsymbol{x}^2 + \boldsymbol{D} \boldsymbol{A} \boldsymbol{B} \boldsymbol{B} \boldsymbol{C} \boldsymbol{$

The balancing-like sequence corresponding to $A = 3$ is the solution of

$$
x_{n+1} = 3x_n - x_{n-1}; \ x_0 = 0, x_1 = 1
$$

and x is a member of this sequence if and only if $5x^2 + 4 = y^2$ for some $y \in \mathbb{Z}^+$. Thus, $x_n = F_{2n}$. The A_1 -balancing-like numbers corresponding to $A = 3$ are values of x satisfying the generalized

Pell's equation
$$
y^2 - 5x^2 = 9
$$
 and are of the form $\frac{3F_{6n}}{2}$. Similarly,

the A_2 -balancing-like numbers are values of x satisfying the generalized Pell's equations $y^2 - 5x^2 = -1$ and are of the form

Expressed as numerical sequences, the balancing-like sequence corresponding to $A = 3$ is

 $1, 3, 8, 21, 55, 144, ...$

the A_1 - almost balancing-like sequence is 12, 216, 3876, 69552, 1248060, ...,

and finally the A_2 - almost balancing-like sequence is 1, 17, 305, 5473, 98209, 1762289,

 A_1 -balancing-like numbers corresponding to $A = 3$ satisfies the recurrence relation

 $u_{n+1} = 18u_n - u_{n-1}$, $u_0 = 0$, $u_1 = 12$

while the A_1 -balancing-like numbers satisfies the recurrence relation

 $v_{n+1} = 18v_n - v_{n-1}$, $s_0 = 1$, $s_1 = 17$.

Almost balancing-like sequence corresponding to $A = 4$ The balancing-like sequence corresponding to $A = 4$ is the solution of

 $x_{n+1} = 4x_n - x_{n-1}$; $x_0 = 0, x_1 = 1$

and x is a member of this sequence if and only if $3x^2 + 1 = y^2$ for some $y \in \mathbb{Z}^+$. Thus, the A_1 - and A_2 -balancing-like numbers numbers corresponding to $A = 4$ are values of x satisfying the generalized Pell's equations

$$
y^2 - 3x^2 = 4
$$
 and
$$
y^2 - 3x^2 = -2
$$

respectively. Finally, the A_1 - and the A_2 -balancing-like numbers corresponding to $A = 4$ are

G.K. Panda, National Institute of Technology Rourkela, Odisha, India ²⁹ $u_n = 2x_n, n = 1, 2, ...$ and $v_n = x_n - x_{n-1}, n = 1, 2, ...$ respectively.

The balancing-like sequence corresponding to $A = 5$ is the solution of

 $x_{n+1} = 5x_n - x_{n-1}$; $x_0 = 0, x_1 = 1$

and x is a member of this sequence if and only if $\mathbf{21} x^2 + 4 = y^2$ for some $y \in \mathbb{Z}^+$. Thus, the A_1 -balancing-like numbers corresponding to $A = 5$ are solutions in x of the generalized Pell's equation $y^2-21x^2=25$. These numbers partition in three classes and are given by

$$
u_n = \frac{8x_{3n+1} - x_{3n}}{2}, n = 0, 1, 2, ...
$$

$$
u'_n = \frac{16x_{3n+1} - 3x_{3n}}{2}, n = 0, 1, 2, ...
$$

$$
u''_n=\frac{5x_{3n}}{2}, n=1,2,...
$$

The A_2 -balancing-like numbers numbers corresponding to $A = 5$ are solutions in x of the generalized Pell's equations

$$
y^2 - 21x^2 = -17
$$

In this case, the A_2 - balancing-like numbers partition in two classes and are of the form

$$
v_n=\frac{2x_{3n+1}-3x_{3n}}{2}, n=0,1,2,...
$$

and

$$
v'_{n}=\frac{62x_{3n+1}-13x_{3n}}{2}, n=0,1,2,...
$$

respectively**.**

Almost balancing-like sequence corresponding to $A = 6$ The balancing-like sequence corresponding to $A = 6$ is nothing but the sequence of balancing numbers and hence the corresponding almost balancing-like sequence is the sequence of almost balancing numbers. The A_1 -balancing numbers x are solutions of the generalized Pell's equation $\mathbf{y}^2-\mathbf{8}\mathbf{x}^2=\mathbf{9}$, while the A_2 -balancing numbers are values of x satisfying $y^2-8x^2=-7$. Further, A_1 almost balancing numbers are thrice the corresponding balancing numbers while, the A_2 -almost balancing numbers partition into two classes and are of the form $2B_n - B_{n-1}$ and $B_n - 2B_{n-1}$, $n =$

, , … **.**

Almost balancing-like sequence corresponding arbitrary AThe

almost balancing-like numbers x corresponding to an even A (> 2) are solutions of the generalized Pell's equations

 $y^2 - Dx^2 = D + 1$ and $y^2 - Dx^2 = -D + 1$ $(D = (A^2 - 4)/4)$

the former being associated with A_1 -balancing-like numbers, while the latter with A_2 -balancing-like numbers. Parametric generalized Pell's equations cannot be solved completely in general; however, it is possible to extract few subclasses of A_1 - almost balancing-like numbers.

Almost balancing-like sequence corresponding arbitrary

For $A = 4$ or 6, there is a subclass consisting of A_1 -balancinglike numbers that are multiples of the corresponding balancinglike numbers. Such a class of almost balancing-like sequence is associated with even integral values $A > 2$. For each A, this subclass of A_1 -balancing-like numbers that are given by

$$
u_n=\frac{Ax_{3n}}{2}, n=1,2,\ldots.
$$

When \bm{A} is odd, this class of numbers multiple of \bm{A} , while if \bm{A} is even, this class is a multiple of $A/2$.

THANK YOU

References

- 1. A. Behera and G. K. Panda, *On the square roots of triangular numbers*, Fib. Quart., 37 (1999), 98 – 105.
- 2. G. K. Panda and A. K. Panda, Almost balancing numbers, Journal of Indian Mathematical Society, 82(3-4) (2015), 147-156.
- 3. G.K. panda, Some fascinating properties of balancing numbers, Congressus Numerintium: Proceedings of the Eleventh International conference on Fibonacci Numbers and Their Applications, 2009.
- 4. G.K. Panda, G.K. Panda and S.S. Rout, *A class of recurrent sequences exhibiting some exciting properties of balancing numbers,* Int. J. Math. Comp. Sci., 6(2012), 4-6.
- 5. G.K. Panda and S.S. Pradhan, Associates of the balancing-like sequences, Submitted

.

ANY QUESTION?