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‘ Introduction ‘

The class of linear binary recurrences
Xn+1 = AXp — X5

with initial terms xo = 0,x4 = 1 are important in the sense that the
case A = 2, refers to natural numbers. The sequence of balancing
numbers is a special case of this class of this class corresponding to
A = 6. The sequences generated from this class of binary recurrences
are all strong divisibility sequence and satisfy many properties
resembling those of balancing numbers. This class of sequence with
A > 2 are known as balancing-like sequences and like natural
numbers, each balancing-like sequence admits the definition of

triangular-like numbers.



Introduction

The nth triangular number is equal to the sum of first n natural numbers and
is also half the product of n and n + 1. However, in case of balancing-like
numbers, the nt" triangular-like number is defined as the product of the nth
and (n + 1)st balancing-like numbers divided by A. But unlike natural
numbers, the difference of nth and (n — 1) triangular-like numbers is not
equal to the nth term of the same balancing-like sequence, rather, it is equal
to the nt" term of another balancing-like sequence defined by
Xni1 = (A% = 2)x, — x4

with initial terms xy = 0,x71 = 1. There are numerous mysteries and
possibilities associated with the balancing-like and associated sequences.
This presentation is devoted to the study of the almost balancing-like

sequences associated with the balancing-like sequences.



Balancing Numbers

Balancing numbers B and balancers R are solutions of the
Diophantine equation

142++B-1)=B+1)+B+2)+ -+ (B+R).

Thus, 6,35 and 204 are the first three balancing numbers with
balancers 2,14 and 84 respectively.

The definition of balancing numbers is due to Behera and Panda: On the square roots of
triangular numbers, Fib. Quart., 37(1999), 98-205.

The concept of balancing numbers also coincides with the concept of numerical centers
described in a paper by R. Finkelstein, The house problem, Amer. Math. Monthly, 72, 1965.
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Balancing Numbers

A natural number n is a balancing number if and only if
8n? + 1 is a perfect square.
8-6%+1=17"

8-35%+1 =99
8-204% +1 =577~
Since
8-1%+1=3%
1 is accepted as the first balancing number, though it does

not satisfy the defining equation of balancing numbers.



BALANCING NUMBERS

If B is a balancing number, then the next one is

3B ++/8B2% + 1
and the previous one is
3B —/8B%2 +1.

The nt" balancing number is denoted by B, .

The number

C,= \/83,,2 +1

is called the nt" Lucas-balancing number.



BALANCING NUMBERS

Balancing numbers satisfy
B,.,=6B,—B,,_{; Bi=1,B, =6.
Lucas-balancing numbers satisfy
c,..=6C,—-C,_4; C,=3,B, =17.

Their Binet forms are

_Aln_;{zn
B, = WA
and
A+ A"
C, = 1 2 |
2

respectively, where A = 3 +2v2, 1,=3 — 2v2.



Balancing Numbers

Recurrence Relation (Non-linear)
B,*=1+By 1 B
Equivalently,
(Bn—1)(B,+1) =By_1°Bpy1
which is looking more natural. In general, the balancing
numbers satisfy
Bm-n*Bmin = (Bm — Bp)(By + By).

=B,°—B,*

The Fibonacci numbers satisfy

Fm-n*Fmin = Fm® = (=1)™"F,”

which is not so natural like the one for balancing numbers.



Balancing Numbers

Balancing numbers behave like natural numbers:

2
Bl + Bg + -+ an_l — Bn
BZ + B4_ + -+ an —_ Bn . Bn_|_1.

The Fibonacci numbers do not have such type of properties.

De-Moivre’s theorem for balancing numbers:

(c; +V8B;)" =cC, +V8B,
More generally,
(Coe £ V8B,) = Coun + V8B
Also,
(Cn £ V8B,,)(C, +V8B,) = (C,,C, + V8B,,B,,)



Balancing Numbers

The identity
Byin = BnCn £ CBy,
resembles the trigonometric identity
sin(x+y) =sinxcosy + cosxsiny
The corresponding Fibonacci identity is

1
Finin = E[Fan t Ly, Frl.

Like Fibonacci numbers, the sequence of balancing numbers is
a strong divisibility sequence.

(Bm »Bn) — B(m,n)
where (m,n) denotes the greatest common divisor of m and n.



Balancing—like Sequences

A balancing-like sequence is a recurrence sequence defined as

Xn+1 = AXp —Xp-1; X0 =0,x1 =1

where A >2 is any natural number. If A = 6 , this sequence
coincides with the sequence of balancing numbers. Each
balancing-like sequence satisfies all important properties of the
balancing numbers. However, balancing-like sequences do not

have defining Diophantine equations like balancing numbers.
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Balancing-like sequences

Sum formulas

2
X1 —+ X3 + - 4 Xo2n-1 — Xn

X2 + X4 + .-+ Xon — Xn * Xn+1
If A2—4 is not a perfect square then

Xm+n = Xm¥n T YmXn
where

y, =+Dx,2+1, D=
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Balancing-like sequences

The Lucas-balancing-like sequence {y,,} associated with the

balancing-like sequence {x,,} defined as

yn=\/Dxn2+1, D =

is an integer sequence if n is even and satisfies the recurrence

relation

A
Yni1 = AYn = Yn-1; Yo =1, y1 =7

identical with the recurrence relation of the sequence {x,, }.



Balancing-like sequences

Like the Fibonacci and balancing sequence, each balancing-like
sequence satisfies the strong divisibility property

(xm ) xn) = X(m n)
where (m,n) denotes the greatest common divisor of m and n.

In addition,
Xm-n* Xmin = (Xm — X5) (X + X3)
Also, the De-Moivre’s theorem holds.

(yl T+ \/Exl)n =Ynt \/an
More generally,
(ym T \/Exm)n = Ymn T \/Exmn-
Also,
(ym T \/me) (yn T \/Exn) — (ymyn T \/Exmxn)-
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Almost Balancing Sequences

A natural number n is called an almost balancing number

if it satisfies the Diophantine equation

{im+DH+Mm+2)+-+n+r1)}
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Almost balancing numbers
f{in+1D+Nn+2)+ -+ nn+1r)}—

142+ - +(n-1)} =1,
we call n an almost balancing number of first kind (4,-balancing
numbers) while if
{n+DH)+m+2) +-+M+r)}—-{1+2+ - +(n—-1)}
= -1
we call n an almost balancing number of second kind (A4,-
balancing numbers). In the former case, we call r an almost
balancer of first kind, while in the latter case we call r an almost

balancer of second kind.
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Almost balancing numbers

If x is an A;-balancing number, then 8x% + 9 is a perfect square
while if x is an A,-balancing number then 8x% — 7 is a perfect
square. Using the theory of Pell’s equation, it is easy to see that
the A;-balancing numbers are given by

u,=3B,,n=1,2,--
while the A,-balancing numbers partition in following two

classes:
v,=B,—2B,_4
and
w,=2B,—-B,_{,n=1,2,---.



Further relationships

If x is a balancing number then a(x) = —5x + 2v8x2 + 1 and
L(x) = —x +V8x2 + 1 are A,-balancing numbers.

: : : V8x2-7+

If x is an A,-balancing number then either < - = or
8x%—-7-x . :
- " isa balancing number.

: : : 5x+2V8x2—7

If x is an A,-balancing number then either f(x) = - - -
X+V8x2-7 :

org(x) = = is a balancing number.

If x is an A,-balancing number then either r

9x+2V8x2-7 .
7

11x+3V8x2—-7 o
7

is the A,-balancing number next to x.
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Almost Balancing-like Numbers

X is a balancing number iff
1+2++x-1D)=x+1D+--+x+1)
x is an almost balancing number iff
1+2+-+x-Dt1=Cx+1D+-+(x+17)

Also,

x is a balancing number iff

8x% +1 = [, a perfect square
x is an almost balancing number iff

8(x%2+ 1)+ 1 =1, aperfect square
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Almost balancing numbers

The balancing numbers B,, can be recurrently defined as
Xn+1 = 06Xy —Xp_1; X9 =0,x; =1
The balancing-like numbers x,, are defined as (for fixed A > 2)

Xn+1 = AXp —Xp-1; X9 =0,x1 =1

Also, x is a balancing number iff
8x% +1 = [, a perfect square
X is a balancing-like number iff

Dx?* + 1 = [],a perfect square

2_
with D = 4 4.



Almost balancing numbers

Generalization from almost balancing to almost balancing-like
numbers:

X is an almost balancing number iff

8(x2 + 1) + 1 = [, a perfect square
This suggests us to define

X is an almost balancing-like number iff

D(x* + 1)+ 1 =1, aperfect square
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Almost balancing-like numbers

Definition: For a fixed natural number 4 > 2, we call a

natural number x an almost balancing-like number if

and only if D(x2 + 1) + 1 is a perfect rational square.

Similar to the case of almost balancing numbers, we

call x an A;-almost balancing-like number if D( x% +



Almost balancing-like numbers

Casel: A s even. In this case D is a natural number. If x is an
Aq -balancing-like number then Dx* +D+1 is a perfect

square say Dx?+ D+ 1 =1vy* and this equation can be

rewritten as
AZ
y>—Dx*=D+1=—
4
which is a generalized Pell’'s equation. Similarly, if x is an
A, -balancing-like number then Dx* — D +1 = y* can be
rewritten as the generalized Pell’s equation

y? —Dx*=-D + 1.



Almost balancing-like numbers
Case llI: A is odd. In this case D is a rational number, an integral

multiple of %2. If x is an A4-balancing-like number then 4(Dx2 +



Almost balancing-like numbers

Almost balancing-like sequence correspondingto A = 3

The balancing-like sequence corresponding to A = 3 is the solution
of

Xn+1 = 3Xp —Xp-1; X9 =0,x1 =1
and x is a member of this sequence if and only if 5x% + 4 = y* for
some y € Z*. Thus, x,,= F5,,. The A;-balancing-like numbers

corresponding to A = 3 are values of x satisfying the generalized

3F
Pell's equation y* — 5x% = 9 and are of the form %. Similarly,

the A,-balancing-like numbers are values of x satisfying the

generalized Pell’s equations y? — 5x% = —1 and are of the form

Fen—3
2 [ ]



Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 = 3

Expressed as numerical sequences, the balancing-like
sequence correspondingto A = 3 is

1,3,8,21,55,144, ...,

the A;- almost balancing-like sequence is
12,216,3876,69552,1248060, ...,

and finally the 4,- almost balancing-like sequence is

1,17,305,5473,98209,1762289, ... .
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Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 = 3

A{-balancing-like numbers correspondingto A = 3
satisfies the recurrence relation

Uyq =18u, —u,_1, Uy =0, u;y =12
while the A-balancing-like numbers satisfies the

recurrence relation

Vp+1 = 180, — v, 4 so=1,5; =17.
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Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 = 4

The balancing-like sequence corresponding to A = 4 is the solution
of

Xn+1 = 4Xp —Xp-1; X0 =0,x1 =1
and x is a member of this sequence if and only if 3x* + 1 = y? for
some y € Z*. Thus, the A;- and A, -balancing-like numbers
numbers corresponding to A = 4 are values of x satisfying the
generalized Pell’s equations
y? —3x* =4 and y* — 3x% = -2

respectively. Finally, the A;- and the A,-balancing-like numbers
correspondingto A = 4 are

u, =2x,n=12,.andv, =x, —x,-1,n=1,2, ..
respectively.



Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 = 5

The balancing-like sequence corresponding to A = 5 is the solution
of

Xp+1 = dXp —Xp-1; X9 =0,x1 =1
and x is a member of this sequence if and only if 21x% + 4 = y2 for
some y € Z*. Thus, the A;-balancing-like numbers corresponding to
A =5 are solutions in x of the generalized Pell's equation

yZ — 21x?% = 25. These numbers partition in three classes and are

given by
8x — X
u, = 3"*% Mt n=0,1,2,..
16x — 3x
ul = 3"*% M n=0,1,2,..
uy =80 =12,



Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 =5

The A,-balancing-like numbers numbers corresponding to A =5

are solutions in x of the generalized Pell’s equations
y? —21x%* = —17
In this case, the A,- balancing-like numbers partition in two classes

and are of the form

and

respectively.
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Almost balancing-like numbers

Almost balancing-like sequence correspondingto 4 = 6

The balancing-like sequence corresponding to A = 6 is nothing but
the sequence of balancing numbers and hence the corresponding
almost balancing-like sequence is the sequence of almost balancing
numbers. The A, -balancing numbers x are solutions of the
generalized Pell’s equation y* — 8x% = 9, while the A,-balancing
numbers are values of x satisfying y*—8x% = —7. Further, A4-
almost balancing numbers are thrice the corresponding balancing
numbers while, the A,-almost balancing numbers partition into two

classes and are of the form 2B, — B,,_q1 and B,, —2B,,_{,n =

1,2, ...



Almost balancing-like numbers

Almost balancing-like sequence corresponding arbitrary AThe

almost balancing-like numbers x corresponding to an even A (> 2)
are solutions of the generalized Pell’s equations

y?—Dx*=D+1 andy? —Dx* = —-D + 1 (D = (A% — 4)/4)
the former being associated with A;-balancing-like numbers, while
the latter with A,-balancing-like numbers. Parametric generalized
Pell’s equations cannot be solved completely in general; however, it

is possible to extract few subclasses of A;- almost balancing-like

numbers.



Almost balancing-like numbers

Almost balancing-like sequence corresponding arbitrary A

For A = 4 or 6, there is a subclass consisting of A;-balancing-
like numbers that are multiples of the corresponding balancing-
like numbers. Such a class of almost balancing-like sequence is
associated with even integral values A > 2. For each A, this

subclass of A{-balancing-like numbers that are given by

Ax3n
n=1,2,....
> n

When A4 is odd, this class of numbers multiple of A, while if A is
even, this class is a multiple of A/2.

U, =



THANK YOU
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ANY QUESTION?
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