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Abstract—In this paper, a dynamic output feedback controller
designed for damping enhancement of inter-area oscillations us-
ing wide-area signals as their feedback signals. The packet-based
communication network is used to transfer wide-area signals.
Communication network constraints such as networked induced
delays, packet dropouts, and packet disorder are captured in the
closed-loop power system by constructing as networked control
system (NCS) model. Stabilization of closed-loop system with
aforesaid problems have been formulated as the delay-dependent
control problem. Sufficient conditions for the design of a dynamic
controller are formulated in form of linear matrix inequalities by
using quadratic Lyapunov criterion. In addition to the dynamic
controller, a robust pole placement approach is applied to place
the closed-loop poles in the prescribed stability region. Nonlinear
simulations on a case study namely a two-area four-machine
power system is performed to evaluate the performance of the
proposed controller and its performances are compared with
power oscillation damping (POD) controller and H∞ controller.

Keywords—Inter-area oscillations, communication network,
network control systems (NCS), Lyapunov criterion, robust pole
placement, LMIs.

I. INTRODUCTION

Mitigation of low-frequency inter-area oscillations (LFIOs)
is the main concern of the power system operators. Inter-area
oscillations are resulted from large power systems coupled
by weak transmissions lines those transfer heavy power flow.
The insufficient damping of LFIOs can decrease the maximum
power transfer capability between interconnected power areas
and deteriorate the power system stability or, worse than
that, the amplitude of these oscillations grow within few
seconds which can lead to voltage collapse or generators may
lose synchronism ultimately resulting in system separations
and blackouts. A famous example of a blackout caused by
these oscillations is Western Electricity Coordination Council
Region on August 10, 1996 [1]. Traditionally, Power system
stabilizers (PSSs) are used to suppress LFIOs by providing
supplementary control action through an AVRs of generators
or, alternatively, flexible AC transmission systems (FACTS)
devices with their supplementary damping controllers. This
controller provides sufficient damping to the local modes
by using local signals as their feedback signals, but the
effectiveness of these damping controllers lessen when coming
to the inter-area modes because inter-area oscillations modes

are not observable and controllable from the local signals of
the generators.

To effectively remove or suppress the effect of inter-area
oscillations, remote or wide-area signals use as feedback
input signals for PSS and FACTS devices [2]. The damping
controllers which use remote signals as feedback signals,
we can call them wide-area damping controllers (WADCs).
Packet based communication network used to transfer these
signals to and from the plant and controllers. The usage
of a communication network in the control loops is called
networked control systems (NCS) [3]. NCS suffers from
some problems such as networked induced delays, Packet
dropout, and packet disordering. These factors may lead to
the performance degradation of wide-area damping control or
may even make the closed-loop system unstable.

In the literature [4]–[6], some of the previous works con-
sidered aforesaid problems in the design/synthesis of WADC.
In [4], [5], Pade’s approximation method used to design
WADC. In this method, which can approximate time delay
during model approximation. Some of the robust controllers
presented in [6], [7] by considering the time delay as the
system uncertainties, and delay-dependent stability analysis
of WADC [8], by calculating the delay margin under which
the system can retain stable. Stability analysis of damping
controllers considering communication time delays reported
in [9], [10]. In [11] WAMS based state feedback controller
designed to reduce the effect of networked induced delays.

In this work, we proposed a dynamic output feedback wide-
area damping controller with robust pole placement to provide
sufficient damping to the inter-area oscillations by placing
the closed-loop poles in the prescribed stability region. The
proposed controller is compared with two different controllers
those are conventional power oscillation damping (POD),
and H∞ controller (these controllers are designed without
considering time delay) to validate the performance of the
proposed controller under communication network constraints.

II. POWER SYSTEM MODEL

The power system consists of various components such as
synchronous generators with their excitation systems, power
system stabilizers (PSSs), FACTS controllers such as TCSC,
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SVC, and several loads. These different components are in-
terconnected through the transmission network. The dynamic
behavior of the components is modeled using a set of nonlinear
differential and algebraic equations (DAEs) [1].

Consider the following differential algebraic equations to
describe the dynamic of the power system.

ẋp = f (xp(t),z(t),u(t))
0 = g(xp(t),z(t),u(t))
yp = h(xp(t),z(t),u(t))

 (1)

where xp(t)∈ ℜnp ,z(t)∈ ℜr,u(t)∈ ℜm and yp(t)∈ ℜp denote
the vectors of state variables, algebraic variables, inputs and
outputs of power system respectively and f ,g and h are vectors
of differential, algebraic and output equations respectively.

Linearizing eq(1) around the equilibrium point and elimi-
nating the algebraic variables, the state space representation of
linearized power system defining by xp,u and yp as the state,
input and output vectors, respectively, as follows

ẋp = Apx+Bpu
yp = Cpx

}
(2)

where Ap ∈ ℜnp×np is the state matix, Bp ∈ ℜnp×m the input
matrix, Cp ∈ ℜp×np the output matrix.

In low-frequency inter-area oscillation studies, the fast dy-
namics are not considered. Hence, the full-order model of
the system is not necessary to consider in controller design.
To simplify and speed up the controller design procedure
generally the order of the system is reduced. By employing
Schur model reduction method [12], only the poorly damped
electromechanical modes are obtained in the reduced model.
The reduced model of linearized model (2) is written as

ẋr = Arx+Bru
yr = Crx

}
(3)

where Ar ∈ℜnr×nr , Br ∈ℜnr×m and Cr ∈ℜp×nr are the reduced
state space matrices. In reduced model, only the state variables
and the state matrix are reduced in order, the inputs and outputs
are remain same as the full-order model.

III. NETWORK-BASED OUTPUT FEEDBACK CONTROLLER

A block diagram of closed-loop power system with the
wide-area power system, communication network and Wide-
area damping controller (WADC) as shown in Fig.1. The
measured output y is sampled periodically and sent to the
WADC through a communication network.

Fig. 1: A block diagram of power system with communication
network

Consider dk is the transmission delay that occurs when the
measured output transferred from PMUs to the WADC at the
updating instant tk with sampling period h. The input of the
controller is written as

u(tk) =y∗(tk)

y∗(tk) =y(tk −dk), 0 ≤ dk ≤ d̄
(4)

Consider δk is the number of accumulated packet dropout
since the last updating instant tk−1 at the updating instant tk.
Assume that δ̄ is the maximum number of consecutive packet
dropout, that

0 ≤ δk ≤ δ̄ (5)

From (4) and (5), it is observed that the upper bound and
lower bound of any two successive updating instants are given
by

h ≤ tk+1 − tk ≤ d̄ +(δ̄ +1)h (6)

Consider the following state space representation of the dy-
namic output feedback controller [13]

ẋc(t) = Acxc(t)+Adxc(t −d)+Bcy∗(t)

u(t) =Ccxc(t)
(7)

where Adxc(t − d) term used to make the controller design
tractable and d is the time delay.

Assume augmented closed-loop power system from (3) and
(7) can be represented as

ξ̇ (t) = Aclξ (t)+Adlξ (t −d) (8)

where ξ (t) =
[
xT (t) xT

c (t)
]T

, Acl =

[
Ar BrCc
0 Ac

]
, Adl =[

0 0
BcCr Ad

]
.

A. Robust pole placement

The location of poles will decide the transient response of a
linear system. By placing poles of the system in a prescribed
region with some specific bounds we can get the satisfactory
transient response. The region of interest α-stability region
Re(s) ≤ −α as shown in Fig.2. To obtain the α-stability
region,let image function of transformation operation be [14]

Fig. 2: α stability region

η(t) = ξ (t)eαt (9)
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where α > 0 is represented as the prescribed degree of
stability.

The transformed closed-loop system can be represented as

η̇(t) = Aη η(t)+Adη η(t −d) (10)

where Aη = αI +Acl ,Adη = Adledα .

B. Controller synthesis

Sufficient conditions for a dynamic output feedback con-
troller with robust pole placement are formulated in LMI
framework in theorem 1 by using Lyapunov criterion to make
the closed-loop system (10) robust and asymptotically stable.

Theorem 1. For given parameters h, d̄, δ̄ , the closed-loop
system (10) is asymptotically stable, if there exist a P = PT >

0, Q = QT > 0, Y1 =

[
y1 y2
∗ y3

]
> 0, Z1 =

[
z1 z2
∗ z3

]
>

0, G1 =

[
g1 g2
g4 g3

]
> 0, H1 =

[
h1 h2
h4 h3

]
> 0, Ak,Adk,Bk,

and Ck satisfying

Λ11 +ΛT
11 +G1 +GT

1 +Y1 Λ12 −G1 +HT
1 dΛT

11 dG1
∗ −H1 −HT

1 −Y1 dΛT
12 dH1

∗ ∗ dΛ33 0
∗ ∗ ∗ dZ1

< 0

(11)[
P I
∗ Q

]
> 0 (12)

where

Λ11 =

[
(A+αI)P+BCk (A+αI)

Ak Q(A+αI)

]
,

Λ12 =

[
0 0

Adk BkC

]
,

Λ33 =

[
r1 −2P r2 −2I
rT

2 −2I r3 −2Q

]
d = 2d̄ +(δ̄ +1)h

(13)

The following change of variables are used to define dy-
namic controller matrices

Ac =−αI +O−1(Ak −Q(A+αI)P−QBCk)N−T

Ad =O−1(Adk −BkCPedα)N−T e−dα

Bc =O−1Bke−dα

Cc =CkN−T


(14)

where N and O are non-singular matrices satisfying

NOT = I −PQ. (15)

Proof. Consider the following Lyapunov candidate function

V (t) =η
T (t)Xη(t)+

∫ t

t−d
η

T (s)Y η(s)ds

+
∫ 0

−d

∫ t

t+ϕ

η̇
T (s)Zη̇(s)dsdϕ

(16)

where X = XT > 0,Y = Y T > 0,Z = ZT > 0 are to be deter-
mined.

The derivatives of V (t) defined in (16) along the trajectories
of the closed-loop system (10) yields

V̇ (t) =η̇
T (t)Xη(t)+η

T (t)X η̇(t)+η
T (t)Y η(t)

−η
T (t −d)Y η(t −d)+dη̇

T (t)Zη̇(t)

−
∫ t

t−d
η̇

T (s)Zη̇(s)ds

(17)

According to Leibniz - Newton formula

η(t)−η(t −d) =
∫ t

t−d
η̇(s)ds,

for any appropriately dimensioned matrices G and H, the
following equation hold,

0 = 2
(
η

T (t)G+η
T (t −d)H

)[
η(t)−η(t −d)−

∫ t

t−d
η̇(s)ds

]
(18)

Adding the terms on the right of (18) to V̇ (t), it becomes

V̇ (t) =η
T (t)

(
AT

η X +XAη +Y +dAT
η ZAη

)
+η

T (t −d)
(
AT

dη X +dAT
dη ZAη

)
η(t)

+η
T (t)

(
XAdη +dAT

η ZAdη

)
η(t −d)

+η
T (t −d)

(
−Y +dAT

dη ZAdη

)
η(t −d)

−
∫ t

t−d
η̇

T (s)Zη̇(s)ds+2η
T (t)Gη(t)−2η

T (t)Gη(t −d)

+2η
T (t −d)Hη(t)−2η

T (t −d)Hη(t −d)

−2
(
η

T (t)G+η
T (t −d)H

)∫ t

t−d
[η̇(s)ds]

(19)

V̇ (t) =η
T (t)

(
AT

η X +XAη +Y +dAT
η ZAη +G+GT )

η(t)

+η
T (t −d)

(
AT

dη X +dAT
dη ZAη −GT +H

)
η(t)

+η
T (t)

(
XAdη +dAT

η ZAdη −G+HT )
η(t −d)

+η
T (t −d)

(
−Y +dAT

dη ZAdη −H −HT )
η(t −d)

−
∫ t

t−d

[
η̇

T (s)Zη̇(s)ds+2
(
η

T (t)G+η
T (t −d)H

)
η̇(s)ds

]
(20)

Let φ(t) =
[
ηT (t) ηT (t −d)

]T , then we can write (20) as
follows

V̇ (t) = φ
T (t)ψ1φ(t)−

∫ t

t−d

[
η̇

T (s)Zη̇(s)ds+2φ
T (t)Lη̇(s)ds

]
(21)

where

ψ1 =

[
AT

η X +XAη +Y +dAT
η ZAη +G+GT

∗
XAdη +dAT

η ZAdη −G+HT

−Y +dAT
dη

ZAdη −H −HT

]
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and L =

[
G
H

]
.

V̇ (t) =φ
T (t)ψ1φ(t)+

∫ t

t−d
φ

T (s)LZ−1LT
φ(s)ds

−
∫ t

t−d

[
η̇

T (s)Zη̇(s)+φ
T (t)Lη̇(s)+ η̇

T (s)LT
φ(s)

]
ds

−
∫ t

t−d
φ

T (s)LZ−1LT
φ(s)ds

(22)

V̇ (t) =φ
T (t)

[
ψ1 +dLZ−1LT ]

φ(t)

−
∫ t

t−d

[
φ

T (s)L+ η̇
T (s)Z

]
Z−1 [LT

φ(t)+Zη̇(s)
]

ds

(23)

From above equation we can see that V̇ (t)< 0 due to[
ψ1 +dLZ−1LT ]< 0 (24)

and [
φ

T (s)L+ η̇
T (s)Z

]
Z−1 [LT

φ(t)+Zη̇(s)
]
> 0 (25)

because of Z > 0.
By using Schur complement [15] on (24), is equivalent toΩ11 XAdη +dAT

η ZAdη −G+HT dG
∗ −Y +dAT

dη
ZAdη −H −HT dH

∗ ∗ −dZ

< 0 (26)

where

Ω11 = AT
η X +XAη +Y +dAT

η ZAη +G+GT

Using Schur complement, the above equation is equal to
AT

η X +XAη +Y +G+GT XAdη −G+HT dAT
η Z dG

∗ −Y −H −HT dAT
dη

Z dH
∗ ∗ −dZ 0
∗ ∗ ∗ −dZ


< 0
(27)

To design a dynamic output feedback controller, let us
introduce the following non-singular matrices [16]

δ1 =

[
P I

NT 0

]
, δ2 =

[
I Q
0 OT

]
. (28)

Let X = δ2δ
−1
1 , then it is verified that

X =

[
Q O
∗ Q̂

]
(29)

Define change of variables as follows

Ak =Q(A+αI)P+QBCcNT +O(Ac +αI)NT

Adk =OBcCPedα +OAdNT edα

Bk =OBcedα

Ck =CcNT

 (30)

By performing a congruence transformation to (27) by
diag{I, I,XZ−1, I}, one gets

AT
η X +XAη +Y +G+GT XAdη −G+HT dAT

η X dG
∗ −Y −H −HT dAT

dη
X dH

∗ ∗ −dXZ−1X 0
∗ ∗ ∗ −dZ


< 0

(31)
From (Z − X)Z−1(Z − X) > 0 we know that −XZ−1X 6

Z −2X . So we can write
AT

η X +XAη +Y +G+GT XAdη −G+HT dAT
η X dG

∗ −Y −H −HT dAT
dη

X dH
∗ ∗ d(Z −2X) 0
∗ ∗ ∗ −dZ


< 0

(32)
By performing a congruence transformation to (32) by

diag{δ1,δ1,δ1,δ1}, we obtainδ T
1 AT

η Xδ1 +δ T
1 XAη δ1 +δ T

1 Y δ1 +δ T
1 Gδ1 +δ T

1 GT δ1
∗
∗
∗

δ T
1 XAdη δ1 −δ T

1 Gδ1 +δ T
1 HT δ1 δ T

1 dAT
η Xδ1 δ T

1 dGδ1
−δ T

1 Y δ1 −δ T
1 Hδ1 −δ T

1 HT δ1 δ T
1 dAT

dη
Xδ1 δ T

1 dHδ1

∗ δ T
1 d(Z −2X)δ1 0

∗ ∗ −δ T
1 dZδ1

< 0

(33)
Define Y1 = δ

−T
1 Y δ

−1
1 ,Z1 = δ

−T
1 Zδ

−1
1 ,G1 = δ

−T
1 Gδ

−1
1 , and

H1 = δ
−T
1 Hδ

−1
1 . Substitute Y1,Z1,G1,H1 in (33), we obtain

δ T
1 AT

η Xδ1 +δ T
1 XAη δ1 +Y1 +G1 +GT

1
∗
∗
∗

δ T
1 XAdη δ1 −G1 +HT

1 dδ T
1 AT

η Xδ1 dG1
−Y1 −H1 −HT

1 dδ T
1 AT

dη
Xδ1 dH1

∗ dZ1 −2dδ T
1 Xδ1 0

∗ ∗ −dZ1

< 0

(34)

By considering the change of variables, we obtain

δ
T
1 XAη δ1 =

[
(A+αI)P+BCk (A+αI)

Ak Q(A+αI)

]
,

δ
T
1 XAdη δ1 =

[
0 0

Adk BkC

]
,

δ
T
1 Xδ1 =

[
P I
∗ Q

]
Hence, (11) is directly obtained from (34), and the proof is

completed.

IV. CASE STUDY: TWO-AREA FOUR-MACHINE
BENCHMARK SYSTEM

A. System Description

The [17] two-area four-machine IEEE benchmark power
system model is considered to validate the proposed controller
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as shown in Fig.3. The system consists of two areas and each
area consisting of two generators and 5 buses. These two areas
are weakly connected by tie-line bus, so there are total 11
buses and 4 generators in the whole system. The synchronous
generators Gi(i = 1,2,3,4) are represented by sixth order
sub-transient model with state variables δ ,ω,E

′
d ,E

′
q,ψ1d ,ψ2q,

which are equipped with a simple fast acting first-order IEEE-
ST1A type static excitation system. To damp out the local area
oscillations G1 and G3 are equipped with a third-order PSS.
The line data, bus data and the parameters of exciters are given
in [17].

Fig. 3: Line diagram of Two-area four-machine system

B. Modal Analysis and Model-Order Reduction

From eigenvalue analysis, three electromechanical modes of
oscillations are presented in the four-machine two-area system
as shown in Table 1. Modal controllability and observability
have been used to select a suitable controller placement and
feedback signals for damping controller design. G1 as taken
the controller location and ∆ω13 as taken as a feedback
signal, these having higher controllability and observability
corresponding to the critical oscillatory mode.

TABLE I: Inter-Area Mode of four machine two area System

Mode ζ f (Hz)

Inter-area 0.0717 0.6534
Local 0.1752 1.2186
Local 0.1684 1.2686

By considering G1 as the input and ∆ω13 as feedback
output signal, the power system model is linearized at the
equilibrium point. The size of the linearized model is 34th

order which gives complexity in the controller design. To
make the controller design convenient and feasible, the model
order reduction is required. By using balanced model reduction
method [12], the original system is reduced to 7th order. The
reduced order model retains the information about the poorly
damped electromechanical oscillatory modes of the full order
model. The validation of the reduced model is done by using
frequency response as shown in Fig.4. The frequency response
of the reduced-order model is the same as the full order model
in the desired frequency range and the peak responses of these
models occur at a frequency about 4.1 rad/sec, which is the
same as the imaginary part of the inter-area oscillation mode.

Hence, the 7th order reduced model is used for the design of
the proposed controller.

10−1 100 101 102

−20

0

20

Full order model
Reduced order model

Frequency (rad/s)

G
ai

n
(d

B
)

Fig. 4: Frequency response of the full vs. the reduced system

V. RESULTS AND DISCUSSION

The 7th order reduced model used to design a dynamic
controller to enhance the damping of inter-area oscillations
when the feedback signals experience communication network
constraints such as networked induced delays, packet dropouts,
and packet disordering. To place the closed-loop poles of
the system in a prescribed region, the robust pole placement
approach is involved in the controller design process. In this
work, we placed the closed-loop poles in the left half s-plane
with α−stability (α = 1). The dynamic controller matrices
are obtained by solving Theorem 1 given in section III-B by
considering h = 0.01s, d̄ = 0.1s and δ̄ = 0.

Nonlinear simulations are performed in MATLAB/Simulink
for validation of the proposed robust dynamic output feedback
controller. The disturbance 3 − φ ground fault is applied
on transmission line #8-#9 at 1sec with duration of 100ms
is considered as the disturbance for the case study. Fig.5,
Fig.6, and Fig.7 show the dynamic behavior of the closed-
loop system. Performance evaluation of proposed controller
is compared with Conventional Power oscillation damping
(POD) and H∞ controller. Fig.5 exhibits the response of the
speed deviation of G1 and G3 (∆ω13) without delay with
different controllers. That controller along with proposed one
gives good performance when the feedback signals do not
experience any delay. Fig.6 shows the response of the speed
deviation of G1 and G3 (∆ω13) with a delay with different
controllers. From Fig.6 we can see that the oscillations are
settled with the proposed controller compared to the remain-
ing controller when the feedback signals experience a delay
(d = 100ms). The proposed controller stabilizes the test power
system even if the delay reaches d = 400ms as shown in Fig.7.
The robustness of the proposed controller is shown in Figures
7 and 8. Fig.7 and 8 show that response to the speed deviation
of G1 and G3 when the delay increases and for random delay
respectively. From the above results, it can be seen that the
proposed dynamic controller is effectively damp the inter-
area oscillation even when the feedback signals experience
the networked induced delays.
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Fig. 5: Speed deviation of G1-G3 without delay
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Fig. 6: Speed deviation of G1-G3 with delay
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Fig. 7: Speed deviation of G1-G3 with delay proposed control
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Fig. 8: Speed deviation of G1-G3 with random delay

VI. CONCLUSION

This paper presents the design of dynamic output feedback
controller with robust pole placement to reduce the effect
of communication network constraints on the power system
performance and stability. Wide-area signals are used as
feedback signals to the proposed controller and these signals
are transferred by using communication network. The network

constraints are described by using networked control system
model for the power system. Stabilization of closed-loop
system with communication network constraints have been
formulated in LMI framework by using quadratic Lyapunov
criterion. The designed dynamic damping controller guaran-
tees the asymptotic stability for the closed-loop system with
aforesaid problems by provides sufficient damping to the inter-
area oscillations. From the results obtained on the two-area
four machine case study, it is concluded that the proposed
control gives improved results in terms of the settling time
and amplitude reduction compared to the conventional POD
controller and H∞ controller.
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