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Abstract— Myocardial Infarction (MI) is otherwise termed
as heart attack, occurs when blood supply stops to certain
artery or to some portion of arteries. MI is depicted in elevated
ST-segment, wide pathological Q wave and inversion of T
wave in electrocardiogram (ECG). This paper presents a
multiscale energy based method for detection of MI. Detection
of MI by consideration of fewer ECG leads requires prior
information of the pathological characteristics of the disease.
Thus, here we have considered all the 12 leads of the ECG signal
simultaneously for detection of MI. Wavelet transform of all the
leads of MI decomposes the signal into subbands of different
order. The multiscale energy of all the bands are computed and
the normalized multiscale energy of the wavelet coefficients are
considered. The pathological structure present in the ECG data
alters the covariance structure of the subband matrix and thus
changes in the feature parameters of the signal occur, which
leads to detection of MI. The results are presented using the
standard MI ECG data from PTB diagnostic database.
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I. INTRODUCTION

The graphical representation of electrical activity of the
cardiac muscles over a period of time is termed as ECG [1].
ECG signal plays an important role in diagnosis of the cardiac
condition of the patient. From the captured ECG recordings,
physicians trace the cardiac condition of the human being.
By seeing the ECG records trained cardiologists trace the
abnormality present in the functioning of the heart. It is
quite strenuous task for the cardiologists to detect the cardiac
disorder by seeing the very long ECG recordings manually.
Thus automated earlier detection and classification techniques
of cardiac abnormality are highly essential.

Myocardial infarction (MI) is commonly referred as heart
block or heart attack, which is the main cause of death
among all cardiovascular disorders [1] [2]. MI occurs due
to occlusion of one of the coronary artery or some small
branches of the artery. The pathogenesis of MI occurs due
to progressive development of atherosclerotic plaques along
the inside wall of the artery. This is followed by deprivation
of oxygen and important nutrients to the myocardial cell
leading to loss of perfusion to the myocardium. This leads to
deposition of blood platelets, red blood cells and fibrin and

thus forming a local blood clot otherwise known as thrombus
[3]. Sometimes thrombolytic substances are detached from
the main artery and are driven to some distal arterial tree and
are deposited there. This is followed by blocking of artery or
some portion of the artery which is termed as formation of
coronary embolus. This is followed by interruption of blood
flow to the artery or some branches of the artery called as
myocardial necrosis. Complete necrosis of the myocardium at
risk takes about 4 to 5 hours to happen. Myocardial injury is
detected when the level of sensitive and specific biomarkers
such as creatine kinase (CKMB) and cardiac Troponin T
increases in the blood [3]–[5].

ECG signal consists of P wave, QRS complex and the T
wave. P wave results from depolarization of the atria. QRS
complex is produced due to depolarization of the ventricles
and T wave is the result of repolarization of the ventricles.
Certain changes in normal ECG wave occur on the onset
of the MI. These changes include ST segment elevation,
appearance of pathological Q wave and inversion of T wave.
Thus MI is categorized as ST segment elevated and non
ST segment elevated MI (STEMI and non- STEMI). The
important feature for earlier detection of MI is ST segment.
There are mainly three stages in MI namely injury, ischemia
and infarction [6]. Elevation of the ST segment occurs at the
stage of myocardial ischemia. Thus ST segment analysis is
the key feature for earlier detection of MI. In a standardized
12-lead ECG system each lead views the heart at a specific
angle. In MI the multilead recordings of heart deviate from its
normal healthy characteristics. The changes occur in different
ECG leads. Thus it is required to investigate all the 12 leads
at one time.

Previously various methods have been proposed for the
detection of MI. Time domain methods are used for analysis
of MI [7]–[9]. ST- segment analysis [10] [11] and the wavelet
transform based methods [12] [13] have been adopted for
detection of MI. Some researchers have developed neural
network approach [14]–[16] for detection and localization of
MI. Some of these techniques use modelling based schemes
by means of training and testing the system. Generally these
modelling based techniques use only few ECG leads for



analysis of MI. The analysis is done on some portion of ECG
signal such as ST- segment, ST-T complex instead of the entire
ECG segment. This needs the accurate and exact detection
of ST-segment. This process requires prior information about
the presence of MI in some of the selected leads. Various
categories of MI are present in different ECG leads. Thus
monitoring all the 12 leads at one time will produce better
accuracy in detection and localization of MI. In this study
wavelet transform and multiscale energy analysis [17] [18]
is used for detection of MI. Here the work is carried out
taking the MI ECG signals from PTB diagnostic database.
Implementation on real data on human subjects needs approval
of the medical board.

II. METHODOLOGY

Fig. 1: Coronary arteries of human heart and 12-standard ECG
leads in different planes

Coronary arteries distribution and their anatomic relations
with ECG leads are shown in Fig. 1. The left main coronary
artery branches into left anterior descending and left
circumflex artery. These two arteries supply blood to the
anterior left ventricle (LV), the lateral and posterior LV
walls, the interventricular septum, and the apex. The right
coronary artery (RCA) supplies blood and nutrients to right
ventricle, inferior wall of LV, part of the posterior wall of
the LV through the posterior descending artery and posterior
interventricular septum [1]. Any of the above arteries may
have occlusions and undergo under myocardial injury. MIs
are categorised into anterior MI, inferior MI, posterior MI,
and left lateral MI. Anterior MI is reflected in the ECG leads
V1, V2, V3, and V4 and the inferior MI is diagnosed from
ECG leads II, III, and aVF. The left lateral MI are reflected
pathologically in ECG leads I, aVL, V5, and V6. Posterior
MI is the result of necrosis in RCA. ECG leads are unable to
trace the behaviour of the posterior wall. Thus, it is analysed
by considering the reciprocal changes in the anterior lead V1.

In Fig. 2, block diagram of sequences of processes for
detection of MI is presented. The detection block includes

preprocessing, wavelet transform, multiscale energy analysis,
and classification. The preprocessing stage consists of
filtering technique and then frame based segmentation has
been performed. A moving average filter [19] has been used
to discard the artifacts such as base line wanders, muscle
artifacts, and the baseline drift. The frame-based segmentation
of 12-lead ECG is done to capture the interlead, intrarhythm,
and intersample correlation information. These are very vital
information to diagnose different types of cardiac diseases
[11].

Fig. 2: Detection of MI from multilead ECG Wavelet Trans-
form

Fourier transform (FT) is performed to represent a signal
as a summation of sinusoids and it is the signal representation
in frequency domain. But the wavelet transform is the
representation of signal in both time and frequency domains
[12]. To detect the onset of MI in ECG recording both time
and frequency domain analysis is needed. Thus wavelet
Transform is adopted to trace the point at which the abrupt
changes have been occurred in the frequency domain at
a particular instant of time. The wavelets are compactly
supported small waves confined between a finite period of
time. A discrete wavelet transform (DWT) generally uses
a dyadic grid a = 2m, m ∈ Z and b = nb02m, n ∈ Z.
Assuming b0 = 1

Ψm,n(t) = 2−m/2Ψ(2−mt− n) (1)

The scaling function is defined as

x(t) =
n=∞∑
n=−∞

SM,nΦM,n(t) +
M∑

m=−∞

∞∑
n=−∞

Wm,nΨm,n(t)

(2)
corresponding to the wavelet

Φm,n(t) = 2−m/2Φ(2−mt− n) (3)

where
SM,n = 〈x(t)ΦM,n(t)〉 : Approximation coefficients
Wm,n = 〈x(t)Ψm,n(t)〉 : Detail coefficients
M : Decomposition level
Signal approximation at level M is expressed as

xM (t) =
n=∞∑
n=−∞

SM,nΦM,n(t) (4)

Detail coefficient of the signal at scale m is expressed as

dm(t) =
∞∑

n=−∞
Wm,nΨm,n(t) (5)

and the signal is the summation of the signal approximation
and the detail coefficient.



x(t) = xM (t) +
M∑

m=−∞
dm(t) (6)

After performing the wavelet transform several features of
ECG signal will be confined to different decomposition level
of the signal.

Wavelet analysis of an ECG signal with M -level decom-
position using suitable mother wavelet produces nth wavelet
coefficient at the M th level [12]. This wavelet analysis is based
upon the multiresolution pyramidal decomposition technique
and it decomposes the signal upto M + 1 subbands. For
kth ECG lead the decomposition results with an approx-
imation subband coefficients, cAk

M,n at level M and with
detail subbands, cDk

m,n at level m where m = 1, 2, ....,M
. The approximation coefficient is obtained by taking the
inner product of the input multilead ECG signal with the
scaling function. The detail coefficient is obtained by taking
the inner product of the input ECG signal with the wavelet
function. In this work a six level wavelet decomposition of 12
lead ECG signal is adopted. The diagnostic and pathological
information are distributed over different wavelet subbands
basing upon their bandwidth and frequency distribution. The
lower frequency subbands contain most significant information
of the ECG signal whereas the higher frequency subbands
contain least significant information.

Multiscale Energy Analysis

Wavelet coefficients of all 12 ECG leads with M-level
wavelet decomposition are represented in M + 1 subband
matrices. The columns of the subband matrix represent the
corresponding leads of ECG and the rows represent the
coefficients of the subband. Considering SM,n = AM,n and
Wm,n = Dm,n , the approximation subband matrix is given
by

AM = [cA1
M,n, cA

2
M,n, ......, cA

k
M,n] (7)

and the detail subband matrix is given by

Dm = [cD1
m,n, cD

2
m,n, ......, cD

k
m,n] (8)

where k=12 is the number of ECG leads and m = 1, 2, ....,M .
The multiscale matrices contain diagnostic components of the
multilead ECG signal. The energy content in the subbands due
to wavelet coefficients along each lead is termed as multiscale
energy.

Ed
m = 1

Nm

∑
n
|DM,n|2 (9)

Ea
m = 1

Nm

∑
n
|AM,n|2 (10)

It is observed that for all the leads of ECG higher order
wavelet subbands (cA6, cD6, cD5, cD4) contain large amount
of energies and the lower subbands (cD3, cD2, cD1) contain
less amount of energies. For multiscale matrix the relative
energy content of the individual matrix is termed as multiscale

multivariate energy contribution efficiency (MMECE).

MMECEAL
=

tr[CAL ]
tr[CAL ]+

∑L
j=1 tr[CDj ]

=
EAL

EAL
+
∑L

j=1 EDj

(11)

MMECEDj
=

tr[CDj ]
tr[CAL ]+

∑L
j=1 tr[CDj ]

=
EDj

EAL
+
∑L

j=1 EDj

(12)

III. RESULT

Here the MI data are taken from the PTB diagnostic
ECG database [20]. The 12 lead ECG data are first fed to
the preprocessing block. The preprocessing block constitutes
filtering method which adopts a moving average filter to
remove the base line wanders, muscle artifacts, baseline drifts
and powerline interfaces from the multilead ECG recordings.
Then the frame based segmentation is carried out to acquire
the correlation information between the leads, between the
rhythms and between the samples. After the preprocessing
the multilead ECG signal is subjected to wavelet transform.
Here the six level wavelet decomposition using Daubechies
6/8 biorthogonal filters is adopted.

Fig. 3: 12 lead MI ECG data

Fig. 3. represents the 12 lead ECG s0010 rem recording
taken from the PTB diagnostic ECG database. The reason
for adopting Daubechies 6/8 biorthogonal filters for wavelet
decomposition is that, the decomposition scaling function and
the wavelet function closely matches the shape of the ECG
signal [21], which is shown in Fig. 4.

Fig. 4: Scaling and wavelet function of biorthogonal 6/8 filter

Fig. 5. represents the lead I ECG recording of the same MI
data. All the 12 lead ECG signal is subjected through wavelet



Fig. 5: Lead I of tested MI ECG data
decomposition and the result is shown in Fig.6. The multiscale
multivariate energy contribution efficiency (MMECE) of the
subband matrices is calculated for different subbands. The
MMECE plot of the MI ECG record is shown in Fig.7.
The relative energy distribution i.e. energy percentage of all
the individual leads are calculated. The subbands cD5, cD6
and cA6 contain more energy whereas the subbands cD1,
cD2 and cD3 contain less energy and it is observed that
higher order subbands contain more relative energy than lower
subbands, which is mentioned in table I for one particular
MI case.The higher order subbands contain vital clinical
diagnostic information of more energy. Lower order subbands
contain relatively less energy due to availability of less clinical
information.

Fig. 6: Six level decomposition of MI case

The within-class variations of normalized multiscale wavelet
energy for all ECG leads are evaluated using 1074 MI mul-
tilead ECG frames. The results of MI are shown here. The
normalized multiscale energy of subband A6 is shown in Fig.
8. Alongwith the normalized multiscale energy of subbands
D6, D5 and D4 are presented here as these subbands carry
the most vital information.The normalized multiscale energy

Fig. 7: Energy contribution of multiscale multivariate matrices
in terms of MMECE for 12 lead ECG.

TABLE I: Energy percentage distribution of subbands

Lead EP A6 EP D6 EP D5 EP D4 EP D3 EP D2

I 95.48% 3.38% 0.67% 0.19% 0.20% 0.08%

II 98.08% 1.56% 0.23% 0.06% 0.05% 0.02%

III 97.08% 1.95% 0.76% 0.10% 0.08% 0.03%

aVR 97.22% 2.26% 0.26% 0.10% 0.11% 0.05%

aVL 95.39% 3.14% 1.03% 0.19% 0.17% 0.08%

aVF 98.02% 1.44% 0.43% 0.06% 0.04% 0.02%

V1 91.15% 8.27% 0.50% 0.05% 0.02% 0.01%

V2 73.59% 24.26% 2.01% 0.09% 0.03% 0.01%

V3 72.04% 24.96% 2.84% 0.13% 0.02% 0.01%

V4 70.50% 26.48% 2.79% 0.18% 0.04% 0.01%

V5 86.92% 11.98% 0.88% 0.13% 0.06% 0.02%

V6 92.73% 6.48% 0.55% 0.11% 0.09% 0.03%

of subbands D6, D5 and D4 are shown in Fig. 8, Fig. 9 and
Fig. 10.

Fig. 8: Variation of multiscale energy for cA6 subbands for
12 ECG leads in MI record



Fig. 9: Variation of multiscale energy for cD6 subbands for
12 ECG leads in MI record

Fig. 10: Variation of multiscale energy for cD5 subbands for
12 ECG leads in MI record

Fig. 11: Variation of multiscale energy for cD4 subbands for
12 ECG leads in MI record

From multiscale wavelet energy analysis it is observed
that the mean, standard deviation, median, median absolute
deviation and mean absolute deviation are different for dif-
ferent classes. The mean, standard deviation, median, median
absolute deviation and mean absolute deviation for the MI
class is analysed and given in table.2.

From the table it is observed that there is very large
difference between the mean and standard deviation among
all the 12 leads of the ECG signal, as all the leads view the
heart at different angle. The mean values of leads I, II, III,
aVL, aVF, V5 and V6 are very low and it specifies that these
leads undergo the infarction in arteries. Inferior MI is depicted
from the leads II, III and aVF whereas left lateral MI is traced
out from leads I, V5, V6 and aVL. Thus the analysis says
that the infarction is an infero-lateral infarction. The standard

TABLE II: . Feature analysis of different leads

Median Mean
Lead Mean Standard Median Absolute Absolute

Deviation Deviation Deviation

I -212.201 275.515 -205 126 185.104

II -418.62 255.629 -385 163 203.401

III -206.42 380.045 -104 196 296.442

aVR 315.379 185.701 305 86 131.023

aVL -2.39 306.324 142 142 223.317

aVF -313.017 293.113 -242 172 233.592

V1 79.271 461.078 134 134 269.911

V2 73.563 462.014 212 212 316.341

V3 114.514 610.669 97 209 367.203

V4 111.224 400.628 155 102 216.483

V5 20.904 249.919 55 120 173.689

V6 36.729 187.177 60 116.5 146.800

deviations of corresponding leads are high which confirms the
abrupt changes of normal ECG shape.

IV. CONCLUSION

In this paper a multiscale energy analysis approach has been
adopted for detection of myocardial infarction. Most of the
ongoing and present works concentrate on only fewer leads
of the ECG signal. Thus it is quite difficult to exactly detect
the presence of MI from the ECG recordings. The proposed
MI detection technique does not require any prior knowledge
of the pathological characteristics of the MI. Here multiscale
multilead energy features are taken into consideration for
detection of MI. Since all the leads are analysed at one time
the simultaneous changes that occur in the leads are properly
traced out here. Thus the analysis provides the detection of
MI with accurate investigation of all the ECG leads.
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